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Chapter 1
| ntroduction

Synthetic Aperture Radar (SAR) has become an invaluable information resource for both
military and civilian applications. The collection of SAR images by various platforms (e.g.
Globa Hawk, NASA/JPL AIRSAR, etc.) and various missions for multiple purposes (e.g.
reconnaissance, terrain mapping, etc.) haslead to vast amount of data over wide surveillance
areas . The pixel-to—eyeratio is simply too high for human analysts to rapidly sift through
massive volumes of sensor data and yield engagement decisions quickly and precisaly.
Effective automatic target recognition (ATR) algorithms to process this growing mountain of
information are clearly needed.

SAR ATR isavery complex problem that still has not been mastered. SAR ATR is
difficult largely due to the fact that SAR imagery exhibits large variability. SAR imagery
isafunction of many variables called operating conditions (OC's) that can be subdivided
into three large groups. The three main OC's are target, environmental, and sensor. Target
operating conditions deal with the properties of the target that can effect the formation
of the SAR image and includes but is not limited to configuration, articulation, different
target classes, and level of damages. Environmental operating conditions deal with the
properties of the environment that can effect the formation of the SAR image and includes
but is not limited to layover, obstruction, background, adjacency, camouf lage, clutters and
weather. Sensor operating conditions deal with the properties of the sensor that can effect the
formation of the SAR image and includes but is not limited to depression angle, polarization,
frequency, and resolution. In the development and testing of SAR ATR agorithms to date
the effects of target, and environmental OC’s have been greatly explored.

In 1999, Timothy D. Ross wrote “ Variability in SAR images due to sensing arrangement
is no less important than that due to target or environmental variability. We have given this
little though to date,” and three years later little has changed [36] . SAR ATR algorithms
generally use MSTAR datato train and test. Unfortunately MSTAR data typically represents
only asingle point in the sensor OC dimension. All the MSTAR data was collected using
the same sensor having the same polarization, frequency, and resolution. The lack of
variation among these parameters makes determining their effects on the performance of
SAR ATR agorithms using MSTAR data alone impossible [36] . The cost and complication
of collecting datawith different sensor OCs seemsto have kept any real progressin thisarea.
Sensor OC's represent al of the ways that the properties of the radar sensor can affect the
outcome of a SAR image. To completely characterize all of the properties of a sensor which
has an effect on the outcome of a SAR image would be far too extensive for this one study.
However the most important sensor properties can be characterized. The sensor parameters,
which have some of the largest effects on the formation of the image, include depression
angle, squint angle, frequency, PRF, polarization, single/multi-look, sensor abnormalities,
noise level, and strip vs spot.

The ultimate objective of this study isto develop aroad map for studying various effects
of varying sensor OC's on the performance of SAR ATR algorithms. To achieve this godl,
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we proposed first to conduct literature search to see how much had been done in sensor
OC condition study. We aso proposed to seek alternative sources or ways to generate SAR
data related to variations of sensor OC’s to support SAR parametric study in the future. In
addition, we proposed to alocate and implement a number of baseline ATR algorithms for
the evaluation of their performance under the variation of sensor OC's. In this document the
results of our work are presented. After a brief introduction of SAR sensor parameters and
their functions in various SAR image formation and enhancement algorithms, the results of
aliterature search done to understand the variations of sensor OC’'sin ATR performance are
presented. Then the results of aliterature search done to identity other potential sources of
SAR data are presented. In order to establish a SAR parametric study paradigm, we have
reviewed a number of ATR algorithms and implemented three baseline ATR algorithms for
this purpose. We have also summarized our initial work in using X patch to generate SAR
data with various sensor OC's. Finaly a preliminary experiment is presented that showsthe
effects of the variation of a selected sensor OC (depression angle) on various SAR ATR
basaline algorithms. Our research has also established an experimental paradigm for SAR
parametric study.



Chapter 2
SAR Parametric Study Literature Review

The literature search on the SAR ATR and parametric studies covers past fifteen years. This
chapter of the report will present the review of the literature search conducted to study sensor
OC'sand SAR ATR. The ssimple goal of thisresearch isto understand how the variation of
sensor OC's effect SAR ATR algorithms by studying public released research. The literature
search in this area turned out to provide little understanding of how variation of sensor OC's
affected the performance of SAR ATR algorithms. What little unclassified literature there
was on sensor OC's seem to mostly deal with the general problem of how sensor parameter
variation effected the formation of SAR imagery. Since ailmost all SAR ATR agorithms
use either the image directly, or features generated from the image, the study of how sensor
parameters affect the SAR image should provide valuable insight into the problem. In order
to explain al the research papers and their implications on SAR parametric study, we will
first briefly review the SAR imaging principle and methods. This brief review servestwo
purposes oneisto let reader know where each sensor parameter fitsin SAR image processing
and the other isto introduce and unify the various sensor notationsthat will appear in the rest
of the documentation. After the brief review, the research works that address the variations
and effects of sensor parameters over SAR images will be explained.

21 SARImagePrincipleand Processing— a Brief

One of the most important attributes of a radar system is its ability to resolve objects.
The determining factor in the resolution of objectsin a classical system is the length of
the viewing aperture. The method of Synthetic aperture radar is a technique of creating
a large aperture by using a very small physical radar and moving it in a straight path
taking measurements in every position. How much of the synthetic aperture is used when
imaging a scene turns out to be an important sensor parameter. The synthetic aperture can
be constructed by either using the entire synthetic aperture to image a small target scene by
steering the radar called spotlighting or use the synthetic aperture to image a target scene
whose length is about the same as the length of the synthetic aperture called strip map. The
spotlight SAR image using the entire synthetic aperture length to image the relatively small
target area produces extremely high resolution, compared to strip map SAR. In order to
understand the effects of Spot and Strip SAR, the mathematical models representing these
respective processes must be developed. The mathematical models that will be developed
in the following sections for Spot and Strip map SAR is basically a summation of the basic
concepts covered in the book “ Synthetic Aperture Radar: Signal Processing with MATLAB
Algorithms” [44] .

The mathematical model describing Spotlight SAR will be developed first. The
development will go through range imaging, cross range imaging, and finally through the
2-D SAR imaging for the Spotlight case. The general concept of range imaging of an object



Section2.1 SAR Image Principle and Processing — a Brief

is based on the idea of echo location. Echo location is based on the fact if awave of energy
(microwave or sound) is directed towards a series of objects, the objects will tend to reflect
back some of that energy towards the sender. The larger objects will tend to reflect back
more energy than smaller objects, this property isknown as the targets ref lectivity, which can
also be refereed to as the radar cross section. The reflected waves from the objects further
away will take alonger time to reach the receiver than the reflected waves from the closer
objects. This property can be used to generate the distance from the target to the radar, which
isalso called the target range.

211 Rangelmaging

In order to develop all of the mathematical equations for range imaging, we need to develop
amodel for the system. Suppose we have a set of N targets that are all at the same fixed
cross range, but at different ranges. The cross range will be denoted as the variable y and
will be parallel to the flight path of the plane. The range will be denoted as the variable x
and will be perpendicular to the flight path of the plane. The radar cross section (RCS) for
each object will be denoted by the reflectivity variable o.

The radar will be considered to be at a position fixed such that the boresight of the
radar is at the same cross range of the objects. The area of the range domain that the radar
illuminatesis called the Radar Swath. The center of the radar swath is designated by X,
which can be determined by the center of mass of the target area,

> on Tnlonl?
AR SRR @3

where z,, and ¢,, are the position and radar cross section for the nt"* scatter respectively.
The support band of the radar swath isgiven by z,, € [X. — X,, X.+ X,]. The Radar
swath is dictated by the radiation pattern of the individual radar with a target area size of
2X,. Using the model above and considering aradar with infinite bandwidth, the ideal target
function can now be constructed as

folz) = ZU,Lé(ﬂc —Zp) (2.2

wherex = %t isalinear transform of time (c is wave propagation speed 3 x 108 m/s). Notice
that fo(%) hasinfinitely fine range resolution.

Now lets devel op range imaging through the idea of radar frequency variation. First we
illuminate the one-dimensional target area with aradar pulse represented by p(t). The echo

signal received by the radar can be represented by the function

2x
c

s(t) = onp(t — =) 2.3)

where 2—“} is the amount of time for the radar pulse to travel out to the n*” target and back.
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Chapter 2 SAR Parametric Study Literature Review

Using the fact that we can represent the echoed signd as

() = fo(5) (1) 24

where x denotes linear convolution.

Thisistruly asimplified model of the radar problem. The true physics characterizing the
scattering of the electromagnetic waves that occur when an object is encountered may point
out that thismodel is useless. It turns out that errors like quantization noise, thermal additive
noise, and multiplication noise are larger sources of error.

There are several ways to reconstruct the target function from the received echo signal.
The preferred reconstruction method is based on the idea of matched filtering. Match
filtering is based on the idea of correlating the received echo with the complex conjugate of
theinitial transmitted radar pulse. This process s represented by

sult) = FH{S() P )} = () +p°(-1) (25
= P onP@) el ) P

22,

= TonF PP ep-ie=)

- ZO’npgf t—2x") fo( )*psf(t)-

The point spread function

22,

T)} (26)

20) = PP expl—w

is dependent on the spectral shape of the transmitted radar signal P(w). The conventionisto
let the power spectrum of aradar pulse | P(w)|? = 1 within itsfinite region of support given
by w € (we — wo,w. + wp) Where w,. denotes the carrier radian frequency and 2w isthe
bandwidth. Using these conditions the point-spread function can be represented as

psf(t —

pss(t) = FH|IPW)*}, we (we—wo,we+wo) (27)
= % sinc(%t) exp(jwet)

where sinc(z) = m. This means the received echo is simply a delayed scaled version
of the transmitted radar signal which is dependent on the position of the target from the radar
and the target’s range radar cross section with some spreading due to sinc function.

The received echo signa is aband pass signal that is usualy converted into alow pass
signal before match filtering. This processis known as base band conversion which can be
represented as

so(t) = s(t) exp(—jwet) 28)
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Section2.1 SAR Image Principle and Processing — a Brief

which gives the final base band matched filtered signal as
sab(t) = sp(t) * sgp(—t)

where so(t) = p(t — 22<) exp(—jw,t) isthe base band version of radar pulse function p(t)
Wh| ch is shifted to the right by a time distance corresponding to the center of radar swath

. Inthisway, the correlation peak a ¢ = 0 isreferred to x = X.. The process of matched
filteri ng is often donein the Fourier domain.

sip(t) = F7H{Sp(w) - Sgp(w)} (29)

- Zo’n “HP(w+ we) exp(— (w+wc)2i”)-

)

= ZU" “HIP(w + we) | exp(—j(w + we)

Zgn.psf(t_w)

P (w+ we) exp(f(w + we)

2(xn, — X,)
c

}

where the point-spread function is found by using the same convention, | P(w)|? = 1 with
w € (we — wo, we + wp). Only differenceisthat P(w + w.) isabase band signa now, that is

psp(t) = FHIPW)}, we (-wo,wo) (210)
wo . wo
= — SlnC(?t).

The matched filtering signa

2(xy, — X¢)
c

) (211)

wo . W
sap(t) = Zan . 70 smc(?o(t -
n

simply shows a sinclike blip at the location of areflector with an amplitude proportional
to its RCS and bandwidth of the radar pulse. For example, if we place one unit reflector at

= Xc¢ — X and another one at o = X ¢, the reconstructed matched filtering signal will
be

— 0rain (2 (¢ + 2%9Y) 4 sin o(“0
S = - [sin ¢( - (t+ c )) + sinc( - t)]. (2.12)
It shows two sinc-like blip at ¢ = % and t = 0 (center of radar swath) respectively. The
range resolution is determined by the spread of the point—spread function. Under the same

assumption that the power spectrum of radar pulse function | P(w)|? = 1 within its 2w
bandwidth, the resolution can be approximated by one half of the main |obe width of thesinc
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Chapter 2 SAR Parametric Study Literature Review

function, that is the location of the first zero crossing at

2A .
o le,l.e.szfl <

T c 2w0:4_BO

(2.13)

where By is the bandwidth of the base band radar pulse p(¢) in Hz. For a digital radar
system, the return radar signal must be sampled with a sampling interval At. According to
the sampling theory,
1

In reality, By may bejust a—3dB cutoff frequency for the radar signal. The actual sampling
interval should be much finer to guard against the alaising error. The sampled radar return
signal in range unit is called discrete range bins.

c-t; N c- At

T = 2’:Xc+(i—§—1)T§fori:l,Q,"-,N (2.15)

wheret;, = Ts + (i — 1) - At isthe samplelocationsin time unit. 7 is the starting sampling
time corresponding to the closest location X . — X, intheradar swath. Fori =1andi = N,
ityields

$1:XC—

E c- At N c- At
2

5 gXC—XOand:cN:Xc—i-(?—l)- > X.+ Xy (2.16)

respectively. The N samples cover the entire support band of the radar swath
[X.— X0, X.+ X,

There is one draw back with the radar pulse given above. The traditional radar pulse is
adirect trade off between power and resolution. If the resolution isincreased the power of
the radar pulse is decreased and vice versa. In order to get around this difficulty, a linear
frequency modulated (LFM) chirp radar pulseis used.

p(t) = a(t) exp(j (Bt + at?)) (2.17)
where

1 for0<t<T,
a(t) = { 0 otherwise

The chirp pulse for the radar signal behaves the same as any other chirp signal. The
instantaneous frequency of the chirp pulseis given by

w(t) = %(ﬂt +at?) = B+ 2at (2.18)

where the frequency upsweeps (o« > 0) from [ to 8 + 2a/7), (rad./sec.). The bandwidth of
the chirp radar pulseis equal to 2a7,,. In this case, the carrier frequency of the chirp radar is

7



Section2.1 SAR Image Principle and Processing — a Brief

considered to be the mid—frequency
we =+ aT, (2.19)

and the bandwidth of the base band signal is then £a/T},. Therefore the Nyquist sampling
interva for the chirp radar return signal is At < QLTP Using the chirp model for the radar

signal, the received echo signal (equation 2.3) becomes

2x,

)

2z,

)+ alt —

) = Y onalt— %) exp(j((t -

C

Z ona(t —t,) exp(jB(t —t,)) exp(j(at? — 2t at + at,?))

wheret,, = 2n,

The reconstruction of objects from areceived echo signal using atransmitted chirp signa
is done by a process known as pulse compression. Pulse compression is done by using the
complex conjugate of the received signal with the phase of the transmitted chirp signal.

sell) = 50 exp(j(Bt +at?) (220)
= Z ona™(t — ty) exp(jBtn) exp(j(2tpat — at,?))

Z ona™(t —t,) exp(§ (Ot — at,?)) exp(j2t,at).

n

The compressed pulse s.(t) contains three parts for each reflector: @) o,a*(t — t,,) isthe
amplitude of the echo from the n'" reflector; b) exp(j(8t, — at,?)) isaconstant phase
delay caused by n'" reflector in a second order function; c) exp(j2t, at) isasinusoid with a
frequency proportional to the location of n'"* reflector. The echoes can be detected by taking
the Fourier Transform of the compressed signal s.(t).

Se(w) = ZanPSf(w — 2tpa) exp(j(Bt, — at,? — wty)) (2.21)

where
Pop(w) = F{a*(t)} = Tpsin c(g—?) (222)

is the point spread function in the frequency domain and 7', is the duration of the chirp pulse
in the time domain. For arectangular pulse function a(t), we can detect the reflect locations
fromthesinc-likeblipat w = 4“—6‘””& in the Fourier spectrum

4oz, ﬂ

Se(w) = ZO‘,LTP sinc((w — T) 277) exp(j(Btn, — at,? — wty,)). (2.23)

The range resolution for a chirp pulse is again decided by the first zero crossing of the sinc

8



Chapter 2 SAR Parametric Study Literature Review

function fromw = 0

daAz T, . e
—+ =1,i.e Ax =
c 2m . 20T,

(2.24)

intherange axisz = ;- w.
(6%

212 CrossRangelmaging

The basic concept behind cross range imaging is the idea of Doppler frequency shift. The
concept of Doppler frequency shift can best be understood by an example. Suppose asingle
frequency pulseistransmitted to a unit reflector with no other clutter. When the echo returns
back to the receiver the echoed signal has the same frequency as the transmitted signal. Now
if we move the receiver towards the object, the received echo signal will appear to have a
higher frequency than the transmitted pulse. If we move the receiver away from the object it
will appear as the echoed signal has alower frequency than the transmitted pulse. Thisisthe
concept of Doppler frequency shift. The cross range imaging that is presented here from a
mathematical viewpoint is based on wavefront reconstruction. Wavefront reconstruction is
the process of inverting the wave equation, which is the Fourier decomposition of a Green's
Function. (Spherical phase function.)

In order to develop al of the mathematica equations for cross range imaging, again we
need to develop amodel for the system. Suppose we have aset of NV targets with reflectivity
on, n=12,--- N andlocated & (z,, y,) Wherez,, € [X. — Xo, X. + Xo] istherange
vdueand y, € [Y. — Yp, Y, + Yy] isthe crossrange value. ThevalueY.. is center of radar
swath in the cross range domain. We assume that all the targets are at a fixed range, e.g.

x, = X,, but at different cross ranges. The position of the radar will be specified by the
coordinates (0, «). The variable u, that isin the same direction as the cross range axis y, is
called the synthetic aperture domain or ow time domain. If Y. = 0, for any given radar
cross range location u, the cross range value is symmetric to u, v, € [—Yo, +Yo], whichis
referred to as the broadside SAR system. Otherwisg, it is called a squint mode SAR system.
The variable of time ¢ will be called the fast time domain. The variation of « can also be
expressed as the aspect angle. The aspect angle is the angle formed between the n*" object
and the radar at position (0, «), which can be expressed as

0, (u) = arctan(Z2—2). (2.25)

Tn

The mathematical model of the received echo can now be generated. Suppose the radar
transmits a single frequency pulse

p(t) = exp(jwt). (2.26)
The distance between the radar at position « and the n'”* object at (x,,, ) is given by

9



Section2.1 SAR Image Principle and Processing — a Brief

V22 + (yn, — u)?. Now the received echo can be represented as

s(t,u) = Zanp (t 2 ot Y = u)2> (2.27)

c

= exp(jwt) ZU” exp (—j2k 2 + (yn — u)2>

where k = < (rad./m) is called the wavenumber. As before we can perform fast time base
band conversion of the received signal to obtain

s(w,u) = s(t,u)exp(—jwt) (2.28)

= Zanexp (—j2km>
— an(w,u)

where
Sn(w,u) = 0, exp (—j2k\/ 22 4 (Yn — u)2> (2.29)

is the base band echoed signal from each individual target. For a wide band signa
w € [we — wo, we + wo, the Fourier transform of the base band converted radar echo signal
(2.27) can be expressed as

s(w,u) = /s(t,u) exp(—jwct) exp(—jwt)dt (2.30)

t

= Plw—w) ZU” exp (—j2k‘ 22 + (yn — u)2>

or simply
s(w,u) = P(w) Zan exp (—jZk\/x% + (yn — u)2) (2.32)

where P(w) is the lowpass base band spectrum of the radar pulse. This expression will

be used later on when we discuss SAR image algorithms. The reference signal used for
matched filtering is only one unit reflector placed at the center of the broadside target area,
which is given by the coordinates (z,,, y,,) = (X, 0). The base band reference signal can be
expressed as

so(w,u) = exp (—j?k\/Xg + u2> . (2.32)

The phase function exp (— J2kr\/22 + (yn — u)2> in equation (2.29) means that the signal
$n(w, w) isaphase modulated (PM) signal or also known as a spherical PM signal. Now take

10
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the slow-time Fourier transform of the spherical PM signal with respect to u € (—oo, 00)

Sp(w, ky) /OO Sn(w, w) exp(—jky,u)du (2.33)

O‘n/ exp (—jZk 22 4+ (yp —u)? — jkuu) du
where k,, (rad./m) represents the spatia frequency domain of the » (m) domain and is also
referred to as the slow-time frequency or Doppler domain (The unit for &, is frequency
(rad./sec) over speed (m/sec.)). Thisintegral can now be evaluated using the method of
stationary phase. The evaluation of theintegral gives the expression

exp(—j7)

Sn(wy ku) =0n
02 k2

exp (—j 4k% — k2 -z — jky - yn> (2.34)

for k, € [—2k, 2k] and zero otherwise. S, (w, k.,) has afinite support band width in k,,. In

thissigna, theterm i;%—ig isjust adowly fluctuating amplitude and the phase term gives

far more importance in cross-range imaging analysis. WWe can approximate the term as

Sp(w, ky) = opexp (—j [\/4/42 — k2 xp +ky ynD (2.35)

where the phase isalinear function of x,, and y,, asthe contrast to a nonlinear function in
Sn(w, ).

The above derivation is only for an infinite aperture synthetic radar, which in practical
applications is impossible. Now letslook at a practical situation where the length of the
synthetic aperture is equal to 2L. This means « can also be expressed asu € [—L, L]. The
dow-time Fourier transform becomes

L
Sn(w,k;u):/ Sn (w, w) exp(—jkyu)du. (2.36)
-L

Again the evaluation of the integration yield the same simplified echo signa in the k,,
domain (equation 2.35). The only difference is that the finite support band width becomes

ku € [Kun(L), Kun(=L)] (2.37)
= [2ksin(6,(L)), 2k sin(0,,(—L))]

where K, (u) is the instantaneous frequency of the PM signd s, (w, u) (2.29) inthe «
domain. It can be found by

Kun(u) = % (—Qk 22 1 (g — u)2> (2.39)
B 2k(yp —u) o
- - 2k sin(0n (u))

11
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where 6,, (1) shown in equation (2.25) is once again the aspect angle of the radar to the nt”
target. The value of

0y, = [2ksin(8,, (L)), 2k sin(6,,(—L))] (2.39)

denotes the slow-time Doppler support band of S, (w, k,,) for n'" target.

Now let us consider a couple oberservations.. Case 1: if a unit reflector is placed at
(@n, yn = 0) which is considered a strict boresight target (also 0,,(0) = 0), then the center of
the band should be located at (v = 0)

an = un(o) = 0. (240)

The band width of S, (w, k,,) inthis case isthe largest equal to

Q, = [QkSin(arctan(_—L)),2ksin(arctan(£))] (2.42)
n xn
o (2L 24,
- Ty Ty

where L is generally much smaller than x,,. Case 2: for the off boresight or squint targets
(yn # 0, thatis, 6,,(0) # 0), the carrier Doppler frequency (also known as the phase center
of PM signals) should be

Qe ~ Kypn(0) = 2k sin(0,,(0)) (2.42)

and the band width should be approximately

4kL
20| ~

‘/'U’n,

cos?(0,,(0)). (2.43)

We can seewhen 6,,(0) = 7, that is, the target is located at (z,,, ¥, = o0), the band width
of S, (w, k) for the target is zero. The radar can not see the target. Therefore, for finite
aperture SAR, it works best for the targets at or near boresight. The band width of Doppler
support band of the squint targets are narrower than those of the boresight targets. It is
crucial to recognize that the SAR signd is a bandpass signal centered at 2k sin(6,,(0)).

The reconstruction of the target function from the received signal is done using the
method of matched filtering which is the same method used in the range imaging case. The
received echo can now be expressed as

S(wku) = Y Sn(w, ku) (2.44)

Z ondn(w, ky) exp (—j(\/4k2 — k2 xp+ k- yn)>

where I, (w, k,,) indicates the band width of the slow—time Doppler support band of n'"

12
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target

1 fork, € Q, = [2ksin(0, (L)), 2k sin(6,,(—L))]

In(w, ku) = { 0 otherwise (2.45)

Same as in equation (2.32), the reference signal for match filtering in Doppler frequency k.,
can be found by placing a unit reflector at the center of the broad side of the radar, that is
(Zn,yn) = (X¢,0). From equation (2.35), it yields

So(w, ky) = exp (—j 02— k2 -Xc) for ky € [—2k, 2k]. (2.46)

To examine the cross range image of the targets, we only pick the targets located at a
common range value, say x,, = X, forn = 1,2, ---. Thetarget function, which describes
the locations of the targets in the scene, can now be expressed by

F(ku) - S(w, ku) . Sg (wy ku) (247)
= eXp(_j 4k2 —k% 'XC)ZO'nIn(W,k‘u) exp (_Jku yn)
. exp (j 02 k2 Xc>

= Z U7LI7L(W7 ku) €xXp (_jku : yn)

which is the same as the match filtering

fy) = s(w,u) x s5(w, —u)

in u domain. The cross range distance y which is in the same domain of u. Now taking the
inverse Fourier Transform the equation F'(k,,) gives

@) = > o F {Iu(w, ku) exp (—jku - yn)}

n
= Zon : Z‘n(‘-‘u:y - yn)
n

where i, (w, y) isthe point spread function for n" target in cross range u. Since I, (w, k)
isabrick function with width equd to |€2,,] in (2.43) and is centered approximately at €2, in
(2.42),

- LYY B 0.1 :

in(w,y) = == sinC(5—y) exp(jQncy)- (2.48)
The point spread function for the cross range is dependent on the slow time Doppler
frequency bandwidth of the system. The magnitude of the target function can now be

13



Section2.1 SAR Image Principle and Processing — a Brief

expressed as

; 77|| sin ¢( |§22ﬂ_|y)| (2.49)

The cross range resolution of the SAR can be again measured by the location of first zero
crossing (one half of the main lobe) of the sinc function

Qy,
| 5 |Ayn = (2.50)
Ityields
A 2r o Aa (2.51)

v Q| 4L cos?(6,(0))

following equation (2.43) and k = < = 27” The resolution obtained in real systems never
approaches this value, so it is customary to multiply this value by afudge factor between 1
and 2. Comparing with the classical Rayleigh cross range resolution for a finite aperture
radar % where R istherange x,,; D isthe radar aperture 21; and effective wavelength \
is % due to the round-trip propagation, A, will be the same as the Rayleigh resolution for

boresight targets (6,,(0) = 0).
2.1.3 SAR Radiation Pattern

The mathematical models generated so far only take into account the effects of the objects
in the imaging scene on the electromagnetic waves of the radar. Thisistoo ssimplistic for
any practical application of radar theory. Any mathematical model to be accurate must take
into account the effect of the input/output of the transmitter, the medium with which the
electromagnetic waves are propagating through, and the noise effects of the receiver. All
three of these effects can be modeled using one linear transfer function called the channel
transfer function. The SAR radiation pattern is a measure that identifies the channd effect.
To greatly simplify the following discussion, the radar will assumed to be stable (no variation
in the radar radiation pattern) and al of the targets in the scene are homogenous.

The first effect to be modeled is the properties of the radiation pattern in the spatial and
Fourier domains of the physical antennaitself. First assume that the radar antennaiis at a
fixed position (0, u). Next assume the antenna absorbs and transmits microwave energy via
its surface. The radar transmits a pulse given by

p(t) = exp(jwt). (2.52)

Now let S represent the contour that defines the surface of the antenna. So to begin
modeling, we will assume the physical antennais centered at alocation (0, «) and composed
of very small differential elements located at

[ze(l),u+ye ()], LS. (2.53)
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An arbitrary point in the spatial domain (z, y) will experience radiation from a differentia
element [z.(1), y.(1)] of antennain transmit mode equal to

i (, S r P = a0
= i) exp(jwt) exp(—jkv/[z — 2 (D)2 + [y — u — ye(1)]2)dl

r

) dl (2.54)

wherer = /22 + 42 and i(1) is the amplitude function that represents the transmitting
strength of that element. Thisis determined by the antenna manufacturer. The total radiation
apoint in space will receive from the antennais simply the sum of al of the elements making
up the antenna

Bl 2,y — 1) = = /]esz'a)exp(—jkwx TP T —u—n0P)d (255

r

where exp(jwt) isremoved via base band conversion. Note that the phase part of the signal
on theright of the equation

exp(—jky/ e — xe (D2 + [y — u — ye(D]?) (2.56)

isaspherica PM signal. Using the previous information on the evaluation of Fourier
transform of spherical PM signals (2.29) and (2.35), its Fourier transform with respect to u
in Doppler frequency domain k,, becomes

exp (= [V =R - (r —2e) + kuly =3 0)]) . ko€ kM. (25D)

Note the similarity between y,, — v and (y — y.(l)) — « in equation (2.29) and equation
(2.55) respectively. Equation (2.55) can be rewritten as

k
hr(w,z,y —u) = %/lesi(l)[/kexp(—j-
(V=2 (@ = 2 0) + Ry = e 0)]) exp(ikuw) ki

k
/_kexp (—j [Mw%—kuyb (2.58)

Ar(w, ky) exp(Gkyu)dk,y,

where
Ap(w k) = / e (§ [VIR - we@) + k()] ) a (2.59)

r

isthe radar transmitting amplitude pattern in the slow-time Doppler domain. The evaluation
of Ar(w, k,,) will depend on the physical attributes (.S) of the individual radar and fast—time
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frequency w. From eguation (2.58), we can get that the Fourier transform of hy (w, z, y — u)
with respect to u isequal to

exp (—j [\/m -z + k‘uyD Ar(w, ky). (2.60)

Using inverse Fourier transform relationship in (2.29) and (2.35), we can have

hr(w,z,y — u) = ar(w,z,y — u) exp (—jkw/:zz2 + (y — u)2> (2.61)

where ar(w, z,y — u) isthe transmit mode radar radiation amplitude pattern.

The model of the electromagnetic radiation being received by a differential element on
the radar from a spatial location (z, y) is the same as the previous mode! of the transmit. In
fact for most radar systems the transmit mode is equd to the receive mode. For an active
monostatic physical radar system located at (0, u), the transmit—receive mode radiation
pattern is simply the product of the transmit and receive modes

h(wvaj?y_u) :hT(wvaj?y_u)hR(wvxvy_u)' (262)

The Fourier Transform of h(w, x, y — u) with respect to the dlow-time u becomes

exp (—j [\/m cx+ kuyD Ar(w, ky) * (2.63)
exp (—j [\/k2 —k2.-x+ kuyD Ag(w, ky).

The convolution becomes a PM signa dominated function and it can be approximated by the
value at its phase center (when integrand = %)

Ar (o, 2 A0, 2 exp (<5 [ VTR 2 4 ). (264

In order for the model to be complete, we need to incorporate the effect the target has on
the electromagnetic radiation. The coherent SAR. signature target amplitude pattern contains
phase and magnitude. The amplitude pattern will vary with the radar pulse frequency and
the aspect angle. The SAR radiation pattern for the nt* target is given by

hn(waxnayn - U) = hT(W,In,yn - u)an(w7xn7yn - U)hR(meyn - U) (265)

which isthe combination of the effects of the radiation from radar to the target, the target, and
radiation from target to radar. The frequency domain representation of the target amplitude
function a,, (w, Zpn, yn — u) is

. 2k (yn — u)
A, (2ksin(0,(u)),w) = A, , W 2.66
(2 sin(6,(u)). ) ( e ) (266)

and it is a scalar function of the physical frequency of the radar and the instantaneous
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frequency (2.38),
o = 2 sin(On () = ——2Wn =W (267)
JZ% + (yn - U)2
where
0, (u) = arctan (ynx_ u) (2.68)

is the aspect angle of the n*” target with respect to the radar at (0, «). Notethat A,,(-) isnot
the Fourier transform of a,,(+), but adirect mapping of the radiation amplitude information

an (W, Ty Y — u) = %An (2ksin(0y,(u)),w) (2.69)
in different scale, where the scale factor % is often ignored for notation simplification. For

example, in generic spot SAR, the amplitude of radiation pattern of atarget at (z,, y,,) inthe
synthetic aperture domain v is arectangular window function

! for |u| < L
Un (W, T Y — u) = { 0 otherwise . (2.70)
In the dlow—time Doppler domain the amplitude function is
A (w, k) = 1 for k,, €, = [2ksin(0,, (L)), 2k sin(0,,(—L))] @271)
0 otherwise.

Therefore, in the Fourier transform domain, we have
K, ke, .
Ar(w, ) Ap(w, 5 Au(w, ki) exp (—j | VIR =K - x + kuy ) (272)
where
o Ar(w,%)AR(w, ) isthe active radar amplitude pattern;
o A, (w,k,) isthetarget amplitude pattern;
e exp (— j [w f4k? — k2 - x + k“yD is the phase history indicating target coordinates.

In the spatial domain, we have
(IT(LL), Z,Y — U)CZR(LU, z,Yy — u)aﬂ(w7 TnsYn — u) €Xp (_]Qk xgl + (yn - U)2> . (273)

The above derivation is done using the assumption that the transmitted and received
electromagnetic radiation is a scalar quantity. Unfortunately the received el ectromagnetic
radiation even from ascalar radar pulse will contain both vertical and horizontal components.
Multiple polarization radar waves are also often used in the transmitted radar pulse to
improve resolution. Fortunately polarized waves can be easily incorporated into our models.
For example, let theradar at (0, «) illuminates an arbitrary target at (x,, y,,) with apolarized
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vertical electromagnetic pulse. The amplitude function of the transmit mode of the radar can
be represented as

CZ¥ (W7 TnyYn — u) : (274)

When the target isillumined by the vertically polarized wave, the target will reflect back
electromagnetic radiation with both a vertical and a horizontal component. This can be
model as one amplitude function which represents vertica mode scatting from a vertically
polarized incident wave

av‘{v(w7xn7yn - u) (2.75)

and one amplitude function that represents horizontal mode scattering from a vertically
polarized incident wave

av‘{H(w7ajn7yn - u) (276)

When the radar isin receive mode, the antenna must record both the horizontal and vertical
components of the electromagnetic radiation that can be modeled with the two types of
amplitude functions

ag(w, Ty Yn — u) and ag(w, Ty Yo — W). (2.77)
For examples:
a¥(w7xvy_u)a‘é(wv'rvy_u)ar‘z/v(wvxnvyn —U) (278)

is the combined amplitude patterns for V' mode transmission and V' mode reception. And

a%(wv T,y — u)a’g(wv T,y — U)GXH(W, TnyYn — u) (279)

is the combined amplitude patterns for V- mode transmission and H mode reception.

214 TheGeneric Spot SAR Model

The purpose of this section isto bring together al the concepts covered so far in the previous
sections to form amultidimensional (range x, cross—ange y, atitude z) SAR image function
that represents the targets in the scene. In the generic SAR imaging model, we will develop
equations using slant range and cross range parameters (s, y)

Ty = V22 + 22 (2.80)

where x isthe range and z isthe elevation of the aircraft. For the notation simplicity, we just
use x for the slant range by considering that the slant plane is also a 2D plane for afixed
aircraft altitude. Again, we assume a collection on NV targets randomly positioned and each
target with aradar cross section given by o,,. Each radar cross section will be modeled with
an amplitude function, a,, (w, ,, ¥y, — u) which will vary with radar frequency, the target’s
relative range and the aspect angle.
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The radar is assumed to be on an aircraft and its location will be given by (0,u). The
aircraft will also be assumed to be moving at a constant velocity, v,., which allows the slow
time domain to be represented by

r=2 (2.81)
Uy
The pulse repetition interval (PRI) is defined asrelated to = by PRI= Ar. This means the
sample spacing in the . domain can be expressed by

vy

Au=Ar-v, =PRIl v, =
u T+ (Y PRE

(2.82)

where PRF stands for pul se repetition frequency.

The radar will illuminate the target area with a large-bandwidth signal p(t). In this
development, we consider a SAR system that keeps the same target area illuminated through
out the scanning development. The targetsin the areawill be seen at all antennalocations,
that is, (—oco < u < 00). Theradar radiation is assumed to be omnidirectional. The echoed
signal received by the radar from the imaging scene can be represented by

s(t,u) = Zonp (t 2Vt (e — u)2> ) (2.83)

c

There are two Fourier Transformsthat can now be used for our benefit in the devel opment
of the rest of the equations. The first isthe fast time (¢) Fourier Transform of the received
base band radar echo signal

s(wy,u) = /s(t,u)exp(—jwc)exp(—jwt)dt (2.84)

t

= P owen (—i2 T F o = 0F)

where P(w) is the lowpass base band Fourier spectrum of the wide band radar signal p(t)
(2.31). This shows that the received signal is alinear combination of spherical PM signals
and the only difference from equation (2.29) is the wide band radar pulse signal. The second
isthe Fourier transform with respect to the slow time domain w,

S(w, ky) = P(w) Zon exp (—j(\/4k2 — k2 x, + ky yn)> . (2.85)

Thisequation is similar to the received echo in equation (2.44) with an exception of the wide
band radar pulse signal.

In order to develop the rest of the equations, we have to define two new functions which
are caled the SAR spatia frequency transforms:

ko(w, ko) = V/AK2 — k2 (rad./m) (2.86)
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and
ky(w, ky) = ky. (2.87)

The echoed signal can now be expressed using the new functions as

S(w Zan exp ( (w, ku)xn + ky(w, ku)yn)) - (2.88)

Theideal target function to represent the objects in the scene can be modeled by

= Zdné(l‘ —Tn,Y — yn) (289)

and its 2D Fourier transformto (k,, k,,) domain

Fo(ka, k) = Zan exp(—j[kzen + kyyn))- (2.90)

The received signal can now be represented as
S(w, ky) = P(w)Fo(kg(w, k), ky(w, ky))- (2.91)

There are several ways to reconstruct the target function (SAR imaging) from received
echo signal. We will discuss three of the common SAR wavefront digital reconstruction
algorithms developed in the late 1980's: fast—time matched filtering, range stacking and
back projection.

The development presented so far does have a significant practical problem that must
be solved before it can be used in practical SAR imaging algorithm. The problem arises
from the fact that the mapping of the data from the (w, k,,) domain to the (k,, k, ) domain is
nonlinear. This means after mapping received echo S(w, k,,) to the (k,, k,) domain, the data
for the function Fy(k,, k) isunevenly spaced, which will cause the object function fy(z, y)
to be an inaccurate representation of the scene. We start with some assumptions that there
are N samplesinfast timet,, = nAt so asin itsfrequency domain

Ao . 2m
¢ eNAt

and M synthetic aperture (slow—time) samplings of the SAR signa S(w, u), which give a
sampling internd Aw in the v domain. After the slow—ti me FFT of S(w,u), thereare M
samples of S(w, k) with the sampling interval 22—, that is

(2.92)

k,=n

27

Since ky (w, k) = k, isadirect mapping, the discrete values of &, are
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The discrete values of k,, are given by

Kamm = /AKZ — k2,,.. (2.95)

The nonlinear transform and the rounding in the cal culation cause uneven samplesin k...,
and errorsin the locations of targets. But it can be corrected by interpolation.

2141 Fast-timeMatched Filtering —an inter polation based digital reconstruction
method The reconstructed target function using matched filtering in Fourier transform
domain can be expressed as

Fky(w, ky), ky(w, ky)) = S(w,ky)P*(w) (2.96)
= [PW)[* o exp (—jlkuan + kyyn])

where k,, € [-2k,2k] andw € |w. — wgp,w. + wo|. Before interpolation can be done, the
function must under go the conversion from a bandpass signal to alowpass signa

Fy(ky(w, ky), ky(w, ky)) = F(ks, ky) exp(jkaXe) (2.97)

by using the reference target function of a unit reflector at (X, 0) for a broadside SAR
system. Or

Fy(ko(w, ku), ky(w, ku)) = F(ko, ky) exp(jka Xe + jkuYe) (2.98)

for the unit reflector at (X,, Y.) in asquint mode SAR. The conversion process will make
the target function f(x, y), that isinverse Fourier transform of F;(k,, k), to be centered at
theorigin (x, y) = (0,0).

The interpolation is to create accurate samples of the function Fy (&, k,,). Since only the
variable k,, experienced a nonlinear transform (2.95), the interpolation is only performed
over the k., domain.

Fb(kmy ky) = Z Fb(kmnnu kynnL)JnL(n; Aw)h(kT - kmnn) (299)
kznm
where
dv/4k? — k2
I Aw) = k) dy i (2.100)
dw dw
4k

c\/4k? — k2,

isthe Jacobian derivative of transformation from & = < to k.. Thefunction h(k, — kznm) iS
any cardinal functionsthat can be awindowed sinc function or a cubic B—spline function. For
any given evenly spaced sample location k, = nAk, the function Fy,(k., k) isinterpolated
from the uneven spaced samples of Fy,(kznm, kynm) Where the sampling interval must
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satisfy
Ak, < —  (rad/m). (2.101)
Xo

Since the length of the target area (— X, Xo) is 2X, then the resolution in Fourier domain,
k., should be 227”0 The target function can be reconstructed by using inverse FFT of the
interpolated Fy (k. , k, ) with even spaced samples.

flz,y) = ZZFb(nAk‘x,mAk‘y) exp {j (azn% + ym%—)] (2.102)

n m

where Ak, = Ak,.
In rea implementation, the Jacobian function in the equation is often ignored due to its
nature of slow fluctuation in the amplitude.

2142 Range Stacking Equation (2.98) shows the result of fast time matched filtering
and base band conversion with respect to the reference point (z,y) = (X,, Yc). In theory,
the target function can be recovered by 2—dimensional Fourier transform.

fey) = /k /k Fy (ke by) exp(ilks - 2 + by - y])dbadh, (2.103)

| [ [8nm) P @ ey =RX. + k)] (2108

exp(j[v/4k2 — k2 - x4+ ky, - y])J(w, ky ) dwdk,,

where equation (2.104) is the map from (&, k) to (w, k,,) for the expression (2.103). For
the same reason, the amplitude function J(w, k,,) can be ignored. At thistime, let us only
consider the target function at the reference range bin + = ;. Equation (2.104) can be
written as

flwi,y) = / / [S(w, ky) P (w) exp(j/4k? — k2(X. + x;) + jkuYe)|(2.105)
ky Jw
dw exp(jky, - y)dky.

In the above equation, the expression inside of the square brackets can be considered as
the received signal S(w, k,,) (2.85) being processed by a fast-time matched filter with a
reference signal at the range bin ;. The reference signal used in the matched filter can
be found by placing a unit reflector at (x,y) = (X, + z;, Y.). From equation (2.85), the
reference signal can be expressed as

Soi(w, ky) = P(w) exp (—j(«/4k2 TR (X 4 1) + e - YC)> . (2.106)
We now have the target function in the Fourier domain.
Fy(w, ky) = S(w, ky)So; (w, ky)- (2.107)
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Therefore, the target function for the reference range bin (z;, y) can be expressed by

flany) = A [ / Fb<w,ku)dw} exp(jke - y)dk, (2.108)

where the signal inside the square bracketsis the integral (sum) of the fast-time matched
filtering result over the fast time frequency at the range bin z;. After that the target signal
at one range hin, x;, can be reconstructed by inverse Fourier transform with respect to k,,.
Thereisaso an alternative algorithm for Range stacking, where the integrations of w and &,
are switched, but the results end up the same. However, the alternative algorithm is more
computational intensive in practical implementation. After repeating the process (2.108) for
x; € (—Xo, Xo), we can put the target functions, f(z;,y), a al the range bins together to
form a 2—dimensional SAR image. Since the actual implementation isall donein (w, k,,)
domain, there is no interpolation involved and thus there are no truncation errors either.

2143 Back Projection In spot SAR mode, the radar antenna at all different locations
(0,u) seestarget area. In order to form a SAR image, the energy reflected from the same
target from different antenna locations must be coherently added together at the same image
location. In the previous two sections, for the fast time matched filtering method, the
coherent adding is realized by correlate received radar signal to a reference function of a
unit reflector at (0, 0) (scene center) for each antennalocation (0, ). In the range stacking
method, the coherent adding is realized by correlate the received radar signal to a reference
function of a unit reflector at range bins (x;, 0) (center of each range bin). Time Domain
Correlation (TDC) reconstruction method is another reconstruction method based on the
formation of the SAR image function by correlating received radar signal with areference
function of aunit reflector at the spatia points (x;,y;). That is

Flaiyi) = / /, s(t,u)p* lt—2 x?+éyj_u)2]dtdu (2.109)

where s(t, u) is the measured radar signal in the (¢, «) domain as in equation (2.27). TDC
reconstructing is basically a method that correlates the received SAR signal with each point
(xi,y;) in the space of the target function. TDC is the measure of the reflectivity at each
point in space. In equation (2.109), theterm

/s(t,u)p* lt 2 27+ — u)Q] dt (2.110)

C
can be considered to be the fast—time matched filtered signal
sp(t,u) = s(tu)*p*(—t) (2.111)

= /7—3(7',u)p*(t—|- T)dT
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at= —27”2?”7“)2 Equation (2.109) can be written as

(i y;) = / sM (—2 v +C(yj — u>2,u> du. (2.112)

Thisis the equation known as the back projection SAR reconstruction. The target function
f(z,y) isreconstructed at each given grid point (x;, y;) by coherently adding up all the data
from the matched filtering results in the fast time domains which correspond to the given
point for all radar antennalocations, w.

215 TheSpot SAR model — Practical Considerations

In the spot mode, the radar beam is steered towards the center of spotlighted target area
(X, Y.) ascontrast to the assumption in the generic radar model there is no radar beam
steering. Since the center is always on the broadside line at all slow—time radar location
value u, the broadside angle for the radar location (0, u) can be defined as

Y.—u
— -1 c
0, = tan ( X ) (2.113)

which varies as the antenna moves along the slow-time value u. |f we create a scene center
coordinate system by shifting and rotation, then we have

( Yy ) - < f§T§f53> ig;((gz)) > < I > (2114)

(xo,,y0,) coordinates vary with respect to the antenna location u. The change of the

distance
Re=vX2+ (Y, —w?  (Ye—u)<2L

from the radar antenna to the scene center will cause the change of radar footprint [—Xg, Xo]
and [—-Yp, Yo]. In practice, the radar footprint change is ignored due the fact that synthetic
aperture length 2L in the cross range « is much smaller than the range in = where

(Y. — u) = 2L only when the squint angle is zero. In the new scene centered coordinates
(xo,,90, ), thetarget areais always in the broadside of the radar antenna. Similar to the
equation (2.66), now we have the beam-steered radiation pattern amplitude function for a
target location (z, y) inside the spotlighted target area

alw,z,y,u) ~ A ( 2k(yo, — 0) 2,w) (2.115)
V%6, — (ye, —0)
_ 4 <2k [(y — Ye) cos(0u) — (z — X) sin(6.,)] ’w>

r

where r is the distance from the antenna location to the target. Note the function is
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a(w, x,y,w) instead of a(w, z,y — u), sSince y and u are now independent variables. The
received fast—time Fourier transform of radar signal in the spotlighted area become

s(w,u) = P(w)Zan(w,x,y—u)a(w,x,y,u) (2.116)

exp (—j2k/23 + (yn — 0)?)

where a,,(-) is the amplitude pattern of n*” target. In the ow-time Fourier transform
domain, we have

Swiky) = Pw)d An (W, k) AW, kus T yo) In(w, k) (2117)

exp [—j (\/4k2 —k2-x, +kuyn>} .

The difference from the generic spot SAR model is the spatial varying function

A(w, ky, Tn, yn) Which will smear the target function and blur the image. It becomes
worse when the phase variation of the radiation pattern amplitude function A(w, k., Zn, yn)
islarge. To remove the smearing effects, a shift varying filter (in slow—time domain )
A*(w, ky, xp, yn) Must be applied to remove the phase variations when A(w, ky, ©p, yn) 1S
not areal or of small phase variations. In the case that radar footprint 2.X,, 2Y, and synthetic
aperture length 21, are much smaller than the radar range R.., the shift varying filter can be
approximated as follows using the invariant squint angle ..

2k [(y — Ye) cos(0.) — (z — X.) sin(6,)] w)

r

Awbnm) = 4 ( (2118)
Furthermore, in narrow bandwidth spot SAR system, k& can be approximated by the
wavenumber k. = << at the carrier frequency.. The invariant filter (2.118) can be further
simplified aweighting function (in slow—-time domain u) according to the target location
(z,9),

(2.119)

Az 4 (2 Y0 o= X0 )

r

216 TheStripmap SAR model

Although Spot and Stripmap SAR use many of the same concepts, stripmap SAR introduces
congtraints that must be taken into account before the SAR system can make maximum use
of the information collected. Thelargest constraint for the Stripmap SAR is how to deal with
each target being “visible” to only asmall part of the synthetic aperture instead of the full
aperture in the Spotlight case. The range coordinates of the SAR image will stay constant in
the Stripmap SAR image, but the cross range coordinates will fluctuate. If we assume the
radar radiation pattern which models the channd effect of a given radar (antenna, receiver,
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propagation medium) is given by

hMw,z,y —u) = a(w,z,y — u) exp (—jZk‘\/ac2 + (y— u)2) (2.120)

where al the valuesin the equation are the same as for the spotlight case. Now if we assume
that the radar used has either a planar or hyperbolic shape, the radar pulse will expand from
the radar into a cone shape. The half beam width B can be defined as

B = rsin(¢,) (2.121)
with afar field approximation of
B = ztan(¢,) (2.122)
where ¢, isthe diverging angle, which is dependent on the geometrical shape of the radar or
more precisely
arcsin Di> for aPlannr radar
bq = D , (2.123)
arctan ( 5 X ) for aHyperbolic radar

where D, is the diameter of the radar in the cross range direction and X is the focal range
of the Hyperbolic radar. For the n*” reflector located at the coordinates (x, ) in the image
scene, the reflector is observable by the radar at the synthetic aperture domain

u € [y— B,y+ BJ. (2.124)

If thetarget area of interest is[—Yp, Yo] in the cross range and the synthetic aperture interval
is[—L, L] that includes the target area of interest, that is, L = Yy + B, then the effective
radiated target areain the cross range becomes [—(L + B), (L + B)]. Since the half beam
width B varies as the range value = changes, the synthetic aperture interval and radiated
area are also changing with respect to the range value . Now as with the Spotlight case, the
return echo can be written as

s(w,u) = P(w) Zan (W, Ty Y — 1) @ (W, Ty Y — W) (2.125)

exp (—32k\/$% + (Yn — u)2>

where all values are the same as defined before. As mentioned before, the nt” reflector can
only be observed by the radar at the synthetic aperture positionswithinu € [y, — By, Yn + By]
where B,, = z,, tan(¢,). Instead of referencing the location of the n'* reflector with the
image coordinates (z, i), we can give the location of the n*” reflector in terms of the aspect
angle. The aspect angle that the n*" reflector makes with the radar can be written as a
function of the radar position u as

0,,(u) = arctan <w> . (2.126)
L
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Now we can determine the interval of the aspect angle that the n'" reflector is observed by
the synthetic aperture, which is given by

00 (Yn + Bn), 0n(yn — Bn)] = [— arctan (f’ ) arctan (f ﬂ [—04, 04l (2.127)

Theresult is now only dependent of the radar parameter ¢, and independent of the reflector
location. Performing the slow-time Fourier transform of s(w, u) yields

S(w, ky) = ZA w, ky) A(w, ky) exp [—j (kzzy + kyyn)] (2.128)

where k, = \/4k? — k2 and k, = k,,. The support band for w is
[wminv wmax] = [wc — Wo,We + WO] (2129)

and for k,, is[—2ksin(¢,), 2k sin(¢,)]. In other words, the angular slow-time Doppler ¢
takesrange

¢ = arcsin (l; ) [—das Dal- (2.130)
The target function can now be reconstructed using fast time and slow time match filtering
F(ky,ky) = P*(w )A* (W, kn) S (w, k:u) (2.131)
= | w kn | Z Ap eXp[ J (ern + kyyn)]

and then the target function can be reconstructed using 2-D inverse Fourier transform with
respect to k,, and k&,

=Y fale =20,y — yn) (2132)
where
Jn(z,y) / / |P(w) A (w, kn) Ay (w, k) exp [~ (ke + kyy)] - (2.133)

The resolution of a stripmap SAR system is dependent upon the bandwidth and geometric
shape of the radar. Since the reconstructed target function is developed from inverse Fourier
transform, the bandwidth of |P(w)A (w, k,,) |* Ay, (w, ky) in (kg k) domain sets the
resolution in (x, y). Lets assume the system uses planar radar.

— VAR RZ = \J4k% — 412 sin* () = 2k cos(9) (2.134)

The bandwidth of the SAR image in the k,, domain isthen given by B, = ku; max — Kz min
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where
Exzmin = 2kmin cos(d,) and Ezmax = 2Kkmax, & ¢ =0. (2.135)
The bandwidth in the £, = k,, domain for a planar radar isgiven by B, = %—Z, where

ku S [_2k Sin(¢d)7 2kSln(¢d)]

A A 4m 47w
€ {—ZkD—y,QkD—y] = {—D—y,D—J . (2.136)

Assuming the amplitude fluctuation is small, using the entire rectangular support area B, by
B,, the 2-D inverse Fourier transform will produce the target function as a separable 2-D

sinc function
sinc <@> sinc <%> . (2.137)
2 2

If half of the main lobe (first zero crossing) is used to represent the resolution width, the
two—dimensional resolution cell in the target domain (x, y) is

2 2w e

v B, 2 [¥max _ “uincog(g,)|  2wo ( )
2r D
Ay = Z_Zu
Y B, 4

Since cos(¢,) is less than one, the actual theoretical resolution is better than the
approximation. For the resolution in y domain, a more conservative value Ay = %"L is
often used. Similarly, for a hyperbolic antenna, from the divergence angle (2.123) and &,
bandwidth (2.136), we have

2

B, = 4k.sin(¢,) = \

4sin(¢y) (2.139)

wherethe k. = = is the wave number corresponding to the carry frequency of the radar.
Thus the resolution for a hyperbolic radar in y domain becomes

2w Ae
Ay = —=—"—"— 2.1
’ B, 4sin(¢g) (2140
o ~ e
~ Zein(,)

for amore conservative estimation.

2161 Sow-time Compression Slow-time compression is used in both spot and
stripmap SAR for digital spotlighting and enhancing the reconstructed radar images. The
dow-time compression technique is based on Fresnel approximation that assumes a narrow
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bandwidth for the SAR system. The approximation is developed for far field assumption that
(yn —u) < X, and |z — Xe| = Xe (2.141)

in other words

23+ (Yo —u)? = Xe. (2.142)

Using the Taylor series expansion of the distance of the n'" target to the radar at the position
(0, ) and dropping the higher order terms, we have

2

TG e, (2.143)

It leads to the Fresnel approximation of the SAR spherical PM signal

_ 2
exp (—j2k\/:c% + (yn — u)2> ~ exp (—ijxn - ]w) (2.144)

From the definition of instantaneous frequency of the spherical PM signal (2.38), we have

9 (—2k w5+ (yn — “)2> - 2k(yn —u)

Kun(u) = ou - X,

(2.145)

Considering the reference signal from aunit reflector at (X, 0) for broadside target, it yields

2
So(w,u) = exp (—jZk\/XE + u2) A exp (—j?k:Xc —jlzg ) (2.146)

c

with an instantaneous frequency equal to

Koo(u) ~ — 2)’:,“ (2.147)

The dow-time compression is realized by the slow—time matched filtering

Sne(w,u) = sp(w,u)sy(w,u)
_ )2 2
X O0,exp (—ijxn —jW) exp (—ijXC —jﬁ? >
2
~ o, exp|—j2k(z, — X.)]exp (j ?gj" u) (2.148)

where the phase term is approximated as K, (u) — K,o(u) by ignoring a small constant
phase term —%}& under the far field assumption. For the finite synthetic aperture
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u € [—L, L], the s ow—time compressed signal in Doppler k,, domain becomes

2L L 2ky,,
Sne(w.ky) = on exp [—52k(x,, — X.)] — sin C {; (ku - ky )} . (2.149)

The target appears as asinc-like blip at
_ 2kyn

ku X, (2.150)
which leads to the target cross—+ange location in slow—time domain at range X,
Xcku
=—", 2.151
Un =51 (2.151)

The half of the main lobe of the sinc function yields the Doppler support bandwidth of the
dow-time compressed signal is %” ,that is

[ 2kyn T 2ky, s
ky € Qne = [ x. T x t L] : (2.152)
The Doppler support bandwidth of the uncompressed signal S,, (w.k.,) is
Qn, = [2ksin(0,(L),2ksin(0,(—L)] (2.153)
2k(yn — L) 2k(y, + L)
Xe ’ Xe '

If al the targets y,, € [—Yo, Y] are considered, the Doppler bandwidth of slow—time
compressed signal becomes 4Xe — 5130 that is

AX. !
2]{;Y0 2kYO 47TYO 47TYO
w € Qe ~ | — , = |- , . 2.1
b € [ X, Xc] { AX, AXJ (2159
For the uncompressed signal, we have the Doppler bandwidith equal to 4’“(5}2@) - 8”%2“ L)
that is
ke € Qw {— 2’“%{* L) 2’““?{* L)} (2.155)
_ [ 4n(Yo+ L) 4n(Yo+ L)
- X, AX. ’
This leads to the restrictions on slow-time sampling interval
2r A X. and A 27 AX, (2.156)

Au, < ==
U_BQC

= <2 _ e
1Y, “=Bg Ao+ D)

for the slow—time compressed signal and uncompressed signal respectively. \We can see that
the sampling interval restriction for the slow—time compressed signal is much easier such that
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Au, can be greater than Aw. From the definition of Au = gz=, we can have the following
two desirable outcomes that PRF can be reduced or the carrier speed can be increased, if
Au, isused to sample the dow—time compressed signal. The dow—time Nyquist rates also
indicate that alarger illuminated (2Y}) target area and longer (21.) synthetic aperture require
finer sampling interval..

For the squint case, the scene center islocated at (X, Y.), therefore, we have

rn =22+ 12 and R.=+/X?2+Y? (2.157)

to represent the distance from radar location « = 0 to the n*" target and scene center
respectively. Then, similarly, we have the slow-time compressed signal

Se(wy,u) = s(w,u)s§(w,u)

2k cos(0.)(yn —
~ Zon exp [—j2k(r,, — R.)] exp (j cos( ];(y

Ye) u> (2.158)

where §, = arctan (%) isthe squint angle. The reference signdl is

s0(w, 1) = exp (_ j2k/X2 1 (Y, — u)2> . (2.159)
The dow-time compressed signal in Doppler k,, domain becomes

I (ku 2k cos(0) (yn — Yc))] ,

Se(w.ky) = ZU" exp [—j2k(r,, — R.)] % sinc [

n ; Rc
(2.160)
The sinc-like blip for the n'" target is now located at
~ 2kcos(0.)(yn —Ye)  2kcos®(0.)(yn — Ye)
ky = R, = X, (2.161)
and its scale transform in cross—+ange domain is
ke + Y. (2.162)

In = o cos(f.)

which can be reduced to the broadside result (2.151) when Y, = 0. Substituting the
yn € [Ye — Yo, Y. + Y)] into equation (2.161), the compressed slow—time Doppler support
band becomes

2kYy cos(0.) 2kYgcos(6.)

ky € Q|- , 2.163
€ T R ( )

where half of the main lobe, T, of the sinc function isignored. Therefore, the sampling
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interva in the cross—range domain must satisfy

27 AR,
Ay < — = —"— 2.1
e = Bq.  4Yycos(6.) (2.164)
which isless restrictive than the one for uncompressed signa in the cross—+range
Au< 2T AR (2.165)

< 2D = ,
U= Ba  4(Yo + L)cos(0,)

However, thisis not true in stripmap SAR. Under the assumption that the scene center
isat (X,,0) (broadside), |u| < X. and the n'" target at (x,,,y,,) can only be observed by
the radar at the locations within synthetic aperture interval v € [y, — By, yn + By where
B,, = z,, tan ¢4, the dow—time compressed signal stripmap SAR signal becomes

c(W.Ry) = n —32 - Xc e w 2.1
Se(w.ky) En on exp [—j2k(r, )] - smc{ - (k; " )] (2.166)

n

where Fresnel approximations of radar signal

22 4 (yo —u)? = Vad +y2 - 2yu+u?
2
— 2y,
~ T, i (2.167)
21y,
and reference signa

u2

\/XC2+U2QXC+? (2.168)

are used. Compared with equation (2.160), L is replaced by B,, due to the change of
synthetic aperture interval length. For each target, the main lobe width of the sincike
function yields

Kun € Qe = [fo" - Bln, fo“ + Bln] (2.169)
If we consider the entire observable target area for the radar locations
ue[-L, L] =[-(Yo+ B), Yo+ B)], (2.170)
the bandwidth of the dow—time compressed signal S..(w.k, ) becomes
b €. {_ 2kY, 2kB, 2kYy N QkB] (2.171)
Tmin ~ Tmin "min  "min

where v isignored. The support band 2. depends on the type of radar and its bandwidth
and beamwidth. A conservative estimation of the sow-time Doppler bandwidth of the
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compressed stripmap SAR signal can be formed as

ky € Q¢ = [—2ksin 0g_ max — 4k sin ¢4, 2k sin Og_max + 4k sin @] (2.172)
where
00_ max = arctan ( Yo > (2.173)
Lmin

is the maximum aspect angle of the target areafor the radar at © = 0. Since

¢, = arctan <&> (2.174)

n

is the beam divergence angle, then a conservative estimation

~ 2sin ¢, (2.175)

Tmin

is used for 7, in the equation. Compared with the slow—time Doppler support band of the
uncompressed SAR signal S(w.k),

ky € Q = [—2ksin ¢, 2k sin ¢,] (2.176)

the dow-time compressed SAR signd has a wider bandwidth. Therefore, the Nyquist
sampling restriction of the dow-time compressed SAR signal,

™ >\min

Au, - - = — - , 2177
Ue < 2k max SIN0p_max + 4kmax Sin @y 48in0g_max + 8sin ¢y ( )

is more tighter than the uncompressed SAR signal
Au < T Amin (2.178)

VUimax SN G, Asing,’

In stripmap mode, even the sampled uncompressed SAR signal S(w.k,,) does not have
aliasing error, it must be upsampled prior to applying ow-time compression.

2.16.2 Digital Spotlighting In order to complete the stripmap image method, we need
to understand the technique referred to as digital spotlighting. Digital spotlighting is to
restrict the return radar signature within a specific target area. In the previous discussion, we
decide the Nyquist sampling interval based on the main lobe bandwidth of the radar radiation
pattern. The returned energy from the side lobes of the radiation pattern is considered to be
small. However, the side lobe energy will appear as dliasing error in the signal. The digital
spotlighting will suppress the radar energy outside the desired target area, such asthe energy
from side lobes, to reduce aiasing error.

Under the assumption of narrow—beamwidth and narrow swath, that isr,, ~ R., we have
the slow—time compressed SAR signal (2.160) for a squint target area in the last section.
Equation (2.161) shows the location of the sincike blip for the n'" target. The digital
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spotlighting is to suppress the SAR signal of the targets that are outside a desired target area,
say

y €Y. =Y, Y.+ Y] and x € [X. — Xo, Xe + Xo]. (2.179)
The implementation of range (x) and cross—+ange (y) gating isusually donein (¢, k,,) domain
using polar format processing. Considering the slow-time compressed signal shifted to
scene center (X, Y,),
Se(w,u) = s(w,u)sp(w,u)
= P@) Y onexp [—j2ky/(Xe+ 202+ (Ve Ty — 0)?] (2180)

P*(w) exp [j2ky/XZ + (Yo — ]

The following approximation is used in the polar format processing.

VXt a2+ Yot yn —w)? = X2+ 2Xea, + 22 +y2 + 2y (Yo —u) + (Yo — u)?
X2+ (Y. — u)? + cos 0o (u)x, +

sin 0o (uw)y, + - - -

VX2 + (Yo —u)? + cos by (u)z, + (2.181)

sin 0o (u)yn

Q

where the high order terms are ignored and

o(u) = arctan (YCX_ u) (2.182)

is the aspect angle of the radar at location u with respect to the center of target area. Using
the approximation, equation (2.180) can be smplified as the target function in (k,, k)
domain,

se(w,u) ~ |Pw)]? Zan exp [—j2k cos 0 (u)x,, — j2k sin O (u)yy]

~ [PW)D o exp (ke (w, w)an — jky(w, u)ym] (2.183)
= F(ks, k’y)n
where
ky(w,u) = 2k cosfg(u) and ky(w,u) = 2k sin 6y (u) (2.184)

are the polar function mapping from (w, u) to (k,, k).
In narrow beamwidth situation, v < R.., the aspect angle can be simplified as alinear
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function of u,
Oo(u) = arct Ye ZU) arctan (22 ) = &
olu = arctan Xc ~ arctan Xc Xc
cos f
~ 0, — < 2.185
R (2.185)
The polar function mapping (2.184) in narrow beamwidth becomes
0.
kr(w,u) = 2kcos <Hc - C(i;c u>
= 92 [cos 0. cos (C(;fc u) + sin @, sin (C(;ch u)]
~ 2kcosf, (independent of u) (2.186)

and

ky(w,u) = 2ksin <Qc — %u)

C

= 2 {sin 0. cos (C(j;fc u) — cos . sin (CCZCQC u)}

2
2k {sin 0. — cos” b u]

(6]

Q

(linear function of u) (2.187)

In the case of narrow beamwidth and narrow bandwidth, that is |k — k.| < k. (k. isthe
wavenumber at the carrier frequency), the polar function mapping can be further simplified
by k ~ k. in some of the terms with smaller quantities

2
ky(w) = 2kcosf. = COCS ecw, ky — w (2.188)
and
2
ky(u) ~ 2k, {Sin 0. — co}s% b u] , ky —u (2.189)

where squint angle 6. is assumed to be much smaller than 1 (near—broadside case). The
polar function mapping becomes simple linear scale mapping from s.(w, u) to F'(k,, k)
without the need of interpolation. The target function reconstruction can be realized by
simply performing two dimensional inverse Fourier transform of the slow-time compressed
signal s.(w,u) = F(ks, ky). We shal notice that the approximation can cause some of the
geometric distortion in the reconstructed target function.

In a more accurate analysis of polar format processing, the location of nt" target is
expressed in apolar spatial coordinates [6,,(0), r,,] where §,,(0) isthe aspect angle from the
radar at u = 0 to the n'” target and r,, is the distance from the radar to the target. The target
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located t [6,,(0), r,] should appear at

2r
ty ~ —

and kun =~ 2k sin [0,,(0) — 0] (2.190)
c

in the polar format processed data (2.183) at the (¢, k,,) domain. Since

Xy, = Ty, €086, (0) and Yn = Ty sin 0, (0), (2.191)
then we have
Tp = C%“ cos [¢,, + 0] and Yn = Ct?“ sin [¢,, + 0] (2.192)
where
¢,, = arcsin (SX) =0,(0) — 6. (2.193)

is the angular dow—time Doppler. Therefore, a two—-dimensional Fourier transform of the
polar format processed data s.(w, u) to (¢, k,,) domain can be used for geometric correction,
motion compensation and digital spotlighting. Note w — t isthe inverse Fourier transform
and v — k, isthe dow—time Fourier transform.

The digita spotlighting the desired target area (2.179) can be redlized by a digital
spotlight filter in (¢, k,,) domain

W(t’ku):{ é L?Lgv;sﬁ' <Xo&ly—-Ye| <Yy (2.194)
where
v = %t coslp+6.] ad y— %t sin [¢ + 0, (2.195)
where ¢ = arcsin(%;t) is the angular slow—time Doppler at the carrier frequency

(narrow—bandwidth assumption). For wide-bandwidth SAR system, one-dimensional
interpolation has to be used for the mapping of ¢ = arcsin(%) from k,, domain to ¢
domain. The digital spotlighted slow—time compressed signal can be obtained by following
processes.

. fa(t, ky) = Wt k) Footu—k, {Sc(w,u)} spotlight filter (2.196)
). Sca(w, ky) = Foo, {fa(t k) } spotlighted in (w, k.,) (2.197)
). seq(w,u) = F ', {Sea(w, ku)} digital spotlighted (2.198)

Between the process I1). (2.197) and 111). (2.198), an optiona zero padding in the k,, domain
can be applied to up—sample the data from the sampling interval Au, to afiner sampling
interval Au.
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2.1.6.3 SubapertureDigital Spotlighting The above discussion of full aperture digital
spotlighting is based on the assumptionsin (2.190). We assume the radial distance r,, from
the nt" target to the radar located at the center of synthetic aperture u. = 0 to be the constant
radial distance for all theradar locations v € [—L, L]. The fast—time of arrival ¢,, would be
different for alarge synthetic aperture. This problem can be addressed by dividing the entire
aperture 2L into N subapertures of length 2L, such as

Y; - L,,Yi—L,] ad Y;=(2i—1)L,—L (2.199)

wherei = 1,2,---, N. The center of target areafor thei*” subapertureislocated at

(Xe, Yo +Y5) (2.200)
and the squint angle
0.; = arctan (YC; Yi) . (2.201)

Now the fast—time of arrival for each subaperture can be approximated as constant within
each subaperture

2/af + (yn + Yi)?
C

tni & (2.202)
The digital spotlighting process step 1). (2.196) is performed only within each subaperture
). fdi(t’ ku) = VVi(t? ku,)fwﬂt;u—»ku {sc(w, u)}v u € [Y; — L, Y; — Ls] (2.203)

where the spotlight filter for ' subapertureis

1 forje—Xe| < Xo& ly—Y. - Y| <Y
Wilt, ku) = { 0 Oth!f Wise < Xo&ly <% (2.204)
and
ct ct .
T = - cos [ + 0. and y= - sin [+ 0c] . (2.205)

Followed by step 11). (2.197) and step I11). (2.198) with zero—padding if necessary. The

N subapertures of digital spotlighted SAR data are then appended to each other for form

Sed(w, u) for SAR imaging. The smaller subaperture 2L, improves the estimation of

fast—time of arrival. The proper subaperture length 21, should be about 100th of the

slow-time Doppler support band of the compressed SAR signal s.(w, «) in (2.163). That is
7 2kminYo cos(0,)

T ZRmin¥o c0S(0c) 22
L, 100 - R, (2:206)

and
I~ 25 R Amax

AL (2.207)
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For a planar radar, the slow—time Doppler support band of the compressed SAR signal is
about l%—’; (2.136) which leads to

T 47

—_—
~

L, 100D,

and L, ~25D,. (2.208)

In stripmap SAR imaging, both full aperture or subaperture digital spotlighting can be
applied. However, there are two reasons to use subaperture: the first oneisto provide
an accurate digital spotlight filter and the second one is the relax the Nyquist sampling
restriction for the slow—time compressed SAR signal, such that

)\min

Ao ~ Ay = 228
Ue ™ 20T singy

(2.209)

There is no need for interpolation before slow—time compression. In stripmap mode, the
broadside SAR is often used, that is Y. = 0. The center of target areafor the i*" subaperture
islocated at

(Xe,Y5) (2.210)
and the squint angle

Y;
0.; = arctan (Y) . (2.211)

C

The digita spotlighting process step 1). (2.203) is exactly the same only with slightly
changed spotlight filter for i*" subaperture

4 1 forjz— X< Xo&|ly—Yi| <Yy
Wilt, k) = { 0 other wise (2212
and

= %t cos [¢ + 0] and y= %t sin [¢ + Oci] - (2.213)

If the full aperture digital spotlight is used, up—sampling must be performed on SAR signal
s(w, u) before slow—time compression.

2164  Stripmap Imaging Algorithm To summarize the discussion of stripmap imaging
method, a eight—step strip SAR imaging algorithm is presented here.
Step 1. Perform discrete fast—time matched filtering of the received signal such as

sar(t,u) = s(t,u) * pg(—t) (2.214)

where po(t) = p(t — T.) isecho signa from a unit reflector at the center (X, 0) of range
swath which isinvariant for the stripmap SAR. And T, = % isreferred to as the reference
fast—time point. \We need to decide the fast—time sampling duration of the radar signal
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te [Tstartv Tend] where

2"nmin 2"nmax
Tetart = c ’ Tend =

+ T, (2.215)

["min, "max] 1S the SAR range gate which defines closest and farthest radial distance of the
radar swath. T}, is radar pulse width. We know the range gate is function of radar frequency

W € [Wmin, Wmax] = [We — wo, we + wo). (2.216)

Thelargest radar range swath equal to [X. — X max, Xe + X0 max] Where Xg pax ~ %
occurs at the lowest fast—time frequency (% = kmin) a@nd D, isthe effective diameter of
aplanar radar. Therefore, the range gate can be decided as

Tmin = Xc - XO maxs Tmax = \/(Xc + XO max)2 + B12ndx (2217)
Where By ~ et Xomar)dnax s the maximum half-width cross-range beamwidth for a

planar radar with an effective diameter D, . The fast—time sampling interval must setisfy the
Nyquist sampling rate A¢ < 7= for aradar bandwidth 2w,. Therefore, the (even) number of
discrete range binsis equal to

Tend - Tetart
N=2|——— . 221
R @29
The reference fast—time point depending on the range swath is often selected as
Tc _ Tend - Tstart ) (2219)

2

Therefore, the matched filter result, sy (¢, u), has % + 1 samples corresponding to the
reference fast—time point 7.

Step 2: Perform the fast—time and slow—time processing. The fast—time processing isto
apply Fourier transform

s(w,u) = Fro {sar(t, )} (2.220)
The dow-time processing include digital spotlighting and slow—time compression. If

4X,

Tend - Tstart < —F
¢ CoS Omax

where 6. = arctan (YX—JF'Y@;TL> is the largest Slow—time Doppler frequency, then zero—
padding must be performed such that the data length is at least equal to NAt = —2Xo

¢-coS Omax
before the Fourier transform (2.220) from ¢ to w. This zero—padding isto make sure there are
no aliasing errors (sufficient frequency resolution) inw so asin k, domains. If full aperture

digital spotlighting of the data is expected, the data must be first up—sampled from Aw to
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Au, before performing slow-time compression
Se(w,u) = s(w,u)sf(w, u). (2.221)

Then either perform full aperture digital spotlighting (2.196) or subaperture digital
spotlighting (2.203) followed by procedures (2.197) and (2.198) to produce s.q(w,u) a
dow-time compressed and digital spotlighted SAR signal. In the case that the size of the
target area in the cross—range is greater than the length of the synthetic aperture, that is

Yo > L, zero—padding s.(w, u) inthe cross+angeto u € [—Yy, Yo] isrequired before digital
spotlight filter (2.196) or (2.203). This zero—padding is to guarantee sufficient frequency
resolution in k,, domain without aliasing errors. Perform slow—time decompression with
down sampling if up—sampling was applied before for full aperture digital spotlighting to
produce

Sa(w,u) = Seq(w, u)so(w, u). (2.222)

sqa(w,u) isadigital spotlighting enhanced version of SAR signa s(w, u).
Step 3: Perform Fourier transform of s4(w, u) in cross—ange u, it yields

Sa(w, ky) = Fuok, {sa(w,u)}. (2.223)

It isadiscrete version of digital spotlighted SAR signal Sq(wn, kum)-

Step 4: Inthecaseof Yy < L (inmost of case L = Yy + B), subsampling in Doppler
domain k,, can be performed to reduce the computational burden and data size. That is
because the data sampling space (resolution) in Ak, = ¥ duetou € [—L, L]. However,
the actual target areain crosst+angeisu € [—Yp, Yp]. The Nyquist sampling restriction
isAk, < v Therefore, if L = 2Y, then we can subsample by 2 (skip asample) in k,,
domain.

Step 5: Assaid in “Step 1", sy (t,u) has § + 1 samples and the first sample
corresponding to the reference fast—time point 7... However, the definition of DFT assumes
that thefirst sampleisat ¢ = 0 which causes adata shift ¢ + 7. We need to correct thisby a
phase delay

Sa(w, ky) exp(—jwTe) (2.224)

such that the datais shifted back to actual ¢t = 0 in fast—time domain.
Step 6: Perform base band conversion of the target area to obtain the target function

F(k$7 ky) = Sd(wv ku) exp(_jWTc) exp(j 4k? — k% - Xe (2225)
where k, = /4k? — k2 and k, = k,, in discrete samples
Evmn = /4k2 — k2 and kymn = Kum.- (2.226)

This nonlinear transformation converts the sasmpled SAR signal from an evenly spaced
sampling domain (ws,, kurm ) to an unevenly spaced sampling domain (Kzmn, kymn)-
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Step 7: Perform spatial frequency interpolation to form a uniform grid in the following
spatia frequency support regions:

km S [kr min — min {kTmn} 3 kT max — Max {krmn}] and

ky € [ky min — min {kymn} 5 ky max — Max {kynm,}] .

Then the uniform grid spacing are decided according to the radar footprint 2.X, by 2Y; such
that

™ s

Ak, =2 ad Ak = L. (2.227)
Xo

The total numbers of samples to be interpolated equal to

o kT max kT min o ky max ky min
L LT S

Now perform spatial frequency interpolation algorithm using the unevenly spaced data
points F'(kymn, kymn) to form an evenly sampled F'(k,, k, ) over the N, by N, uniform
grid.

Step 8: Take the 2-D inverse discrete Fourier transform of the spatial frequency
interpolated target spectrum F'(k,, k) to yield atarget function

which is evenly sampled with the following uniform sampling interval

27 2X 2w 2Y),
A, = - A, =zl 2.2
@ and Ay N, Ak, N, (2.230)

2.1.7 Motion Compensation

All of the target function reconstruction a gorithms presented assumes that the radar-carrying
vehicle maintains a constant velocity and maintains a constant linear motion path within
only afew wavelengths of the radar signal. These nonlinear motion components (also called
motion errors) cause “fuzziness’ in the SAR image, which must be compensated for in order
to arrive at the optimal image. Motion compensation is usually done in two stages: first
using global positioning system (GPS), and second using in scene targets.

Thefirst step in the development of the motion compensation equations is the modeling
of the motion errors. The motion errors in the range = and cross—range y domain can be
represented as

[2e(u), u + ye(u)] - (2.231)

Now if we place a unit reflector at (x.,,, y,), the received SAR signal with motion error
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becomes

sn(w,u) = exp [—j?k:\/(:cn - :ce(u))2 + (Yn —u— ye(u))ﬂ (2.232)

as contrast to the case without motion error s, (w, u) = exp [— J2k\/22 + (yn — u)ﬂ .
Now we can rewrite the equation

Sn(w, 1) = ten (W, T, Yn, — u) €XP [—ij\/x% + (yn — u)z} (2.233)
where
Aen (W, Tpy Yn — u) = exp [—j2kTen (u)] (2.234)

is caled the motion phase error function and

Ten(u) = V22 + (yn — u)? — \/(:cn - :zze(u))2 + (Y —u— ye(u))2 (2.235)

is caled the radial error for the n'”* target. Now if the fluctuations of the motion phase
error function are much smaller than the error free SAR signal, we can model the phase
error function of the signal as afilter in the spatial frequency domain (k,, k,,). This can be
represented as

Hen(kxa ky) =  Qen (w, TnyYn — u) (2236)
exp [—j2kren (u)]

where2k = | /k2 + k2 andu = y,, — %xn If a GPS sensor is placed with the radar system,

an estimate of the vehicle trgjectory can be made and from this information, the motion error
can be estimated.

The image created using the GPS based motion compensation may still have motion
errors because of the in accuracy of the GPS system. The second step is to further refine
the motion compensation using in scene targets. Suppose there exists adistinct target (say a
fiducia reflector or acommunication tower) in theimaging scene. The SAR image signature
(peak) of the distinct in—scene target can be identified at location (z;,y;). If we extract the
SAR signature as h.; (z, ) from the scene, that isto shifted it by (—x;, —y;). Since we know
there is motion phase error included in this SAR signature, the extracted feature now only
contains radial error in the phase (2.235). The two—dimensional Fourier transform

Hen(kma ky) = Fr,y—»km,ky {hel(l', y)} (2237)

forms motion error filter function for the in—scene target. In a narrow beamwidth case, the
radial motion error for the in—scene target can be approximated by

Ten(t) = zo(u) cosb. + ye(u) sin b, (2.238)
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where 6. is the average target squint angle. For stripmap case, usualy 6. = 0, then
ren(u) =~ x.(u). That shows the motion error is spatially invariant in the scene. Therefore,
the in—scene target motion compensation for the narrow beamwidth radar can be realized by

Flayy) = Fily, oy 1 (ko ky ) H (K Ry )} (2.239)

2.2 Prior Worksin SAR Parametric Study Reviewed

In this section, we will outline the past research related to SAR parametric and automatic
target recognition (ATR) study. Thefield of SAR and ATR are relatively new. We found most
of theworks are in the past decade. From the brief summary of the SAR imaging agorithms,
we can see there are many variations in SAR imaging technology from type of radar, radar
parameters to approximation methods. Some of the key radar parameter variations also
known as sensor operating conditions (OC's) include

1. Type of radar antenna which has influence on parameters like divergence angle
(beamwidth), radiation pattern, resolution, radar footprint, etc.

Radar frequencies and bandwidth which aso has influence on parameters of resolution,
radiation pattern, radar footprints, etc.

Antenna polarization

Depression (elevation) angle

Squint angle

Synthetic aperture length

Pulse Repetition Frequency (PRF)

Target function reconstruction algorithms based on different approximation methods
Image enhancement technol ogies such as digita spotlighting, motion compensations and
others

10. Radar waveforms such as pulse, chirp and white noise.

11. Noises

N

© © N O AW

Any combinations of those SAR parameter variations can have significant impact on
the appearance, resolution, contrast, signature locations and geometric distortions in SAR
image. However, there were no prior systematic research to address how those sensor
parameter variations would affect the performance of ATR algorithms either qualitatively
nor quantitatively. In two—dimensional image based SAR ATR agorithms, the database is
build around the same collection of data. The training data set and testing data set are from
the same data acquisition platform. There are no variations of sensor OC's in either data
set collections or ATR agorithms development and testing. For example, in MSTAR data,
the only sensor variation is a collection of data sets in two different depression angles. It
is difficult and expensive to collect data sets that cover a broad aspects of sensor operating
conditions. In addition, the existing image ATR algorithms never have to face the data from
different SAR sensor platforms with different sensor OC's. The same target under the same
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target OC's and the environmental OC's will appear significantly different in SAR images
with different variations of sensor OC's. In our literature review, we have collected any
research papers that covers the studies on one or more sensor parameters. The studies of
sensor parameters that we reviewed cover not only ATR but aso in image formation. We
will organize our review according to particular sensor parameters and itsinfluence on ATR
or image formation. Aswe stated earlier, not al the sensor parameters are addressed by prior
research.

2.2.1 Frequency

The frequencies used in the radar pulse is one of the sensor parameters that has the largest
effect on SAR image formation. The frequency of the electromagnetic radiation used by the
radar affects the scattering of the wave by the object and the penetration of the radar wave.

The wavelength of the excitation, which is equal to the inverse of the frequency of the
radar wave, determines several of the scattering characteristics of the target. Radar imagery
is principally separated from optical imagery by the frequency of the radiation used for
imaging. For acomplex object, aphysical feature of that object will only bevisibleif thesize
of the feature is larger than the wavelength used to image it. Since radar generally operates
at lower frequency than optical systems, many of the details of a complex object that appear
in an optical image will be blurred by the radar pulse to the level below perception in the
image. Lower frequencies used in the radar pulse have the advantage of being able to
penetrate several mediums. Low frequency radar has been developed to image objects in
vegetation (FOliage PENetrating radar or FOPEN) and image objects underground. (Ground
PENgetrating radar or GPEN)

The Foliage penetrating radar use UHF and VHF frequencies along with ultra wide
bandwidth (UWB) and ultra wide angle signal properties which dramatically changes the
phenomenol ogy observed compared to traditional SAR. The speckle observed in traditional
SAR imagesis greatly reduced in FOPEN SAR image due to the increase in the wavelength
of theradiation that causes one dominant scatter to be imaged per cell. The man made targets
also change in appearance in the image because of the increased in the wavelength of the
radiation used. The dominant target return is generally from the entire body of the target and
has the effect that the radar cross section (RCS) of the target is more strongly a function of
its orientation [3] .

Experiments were conducted by the Army Research Lab that demonstrated the ability
of FOPEN radar to detect a complex target such as vehicle and canonical shapes in heavy
foliage [20] . The experiment was limited due to the fact only one vehicle was used, and
a comparison of the results with traditional SAR frequencies was not made. The Army
Research Lab also demonstrated that lower frequencies (130-330 MHz) could provide
sufficient ground penetration to detect buried (6 inches) antitank mines (M-20) where the
tradition X band SAR was unable to detect the mines [17] . The experiments did show
however, that the lower frequencies used for ground penetration decreased resol ution enough
that the buried smaller anti-personnel mines (Valmara 69) went undetected. The second
experiment was of limited benefit to SAR ATR research because complex targets were not
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used and hence impossible to access the effects of classification with frequency.

Thebest illustration of the differences of SAR imagery with frequency isthe devel opment
of themodel representing a conventional sizetrihedral at traditional SAR frequency vs SAR
radar operating at FOPEN or GPEN radar frequency. The conventional sized trihedral are
important in SAR imagery because they are used in the calibration of SAR systems and
many complex targets can be approximated as a sum of trihedral and dihedral scatters.

For traditional SAR freguencies which include X, C, and L bands (in GHz range) the
mathematical model developed to represent the conventiona sized trihedral are based on
the geometric theory of diffraction (GTD) [15] . The GTD allows the representation of a
complex object as the sum of individual scattering centers (SC's). The GTD saysif the
wavelength of the radar radiation is small relative to the extent of the object, then the
reflected radiation can be well approximated as contributions from electrically isolated
scattering centers.

Now lets outline the mathematical modd developed by Gerry, et. a. in 1999 [15] , which
will provide representation of an object scattering center using frequency and aspect angle of
the radar and parameters of the target. The radar position will be defined by the aspect angle
¢, which is defined counterclockwise from the = (range) axis. The mathematica model will
not only use GTD but will also assume far zone backscattering of the radar wave, which
means the incident radar wave, will assume to be planar when it reaches the target. For
developing the mathematical model using the GTD under the far zone backscattered field
assumption, we need to make three more assumptions.

The first assumption is that the received radar wave of afar field scattering center (SC)
shows linear phase dependence, that is the phase of a SC at a given aspect angleisonly a
function of the position of the SC. The assumption has the affect of excluding the effect of
disperse scattering mechanism such creeping waves and resonant cavities. The backscattered
radiation for the n** scattered can be defined as

By (k, ¢) = Sn(k, ¢) exp [52k(7e - 7)] (2.240)

where k = ¢ isthe wave number and 7 is the unit vector in the direction of scattering field
aswell as7), = (x,,,y,) isthe position of n'* SC (target) projected to the image plane. In
the development of thisand all other equations, theterm exp(jwt) isassumed in the equation
and is suppressed for convenience.

The second assumption is that the amplitude of the received radar wave depends on
frequency. This assumption is govern by the high frequency approximation given by GTD.
Using the above assumption, and a conservation of energy argument, it can be shown that the
amplitude of the backscattered radiation as function of frequency for many different types of
geometries can be approximated as

(jk)* (2.241)

when o = 1 for flat plates at broadside or dihedral; o =
reflection; o = 0 for point, sphere, or straight edge; a =
o = —1 for corner diffraction.

or singly curved surface

Ly
2
— 3 for edge diffraction; and
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The last assumption is that the amplitude dependence of the received radar wave on
aspect angle can be characterized either as spatially distributed or localized. A localized SC,
which includes trihedra corners and edge diffraction, can be assumed to be a point sourcein
space with slowly varying amplitude as the aspect angle changes. The slowly varying SC's
can be modeled with a damped exponential. Using some physical insight a mathematical
model was developed and can be written as

Sn(f,¢) = Apexp (—wy,,sing) (2.242)

where ~,, isan empirical quantity with no physical interpretation. Distributed SC’s, which
include dihedrals, and cylinders, can be assumed to vary with aspect angle approximately
equal to the sinc function. A distributed SC can be represented as

Sulf,6) = Ausine (£ Ly sin( - ,)) (2.249)

where L,, isthe length and ¢,, is the orientation angle of the scatter. Combing the two types
of scattering mechanisms form the complete model for an individual scattering center and
can be written as

w
We

Bk ¢) — An~<j—> ' sin (£ L, sin(6 — 6,)) exp (~wr, sin ) (2244

2
exp |:]_w (xn COS ¢ + Yy sin ¢):|
C

where L,, = 0 if the SC islocaized and ,, = 0 if the SCis distributed. The total radar
return is simply the summation of theindividual SC for the total of P scattering centers

P
Bk, ¢) =Y B3 (K, ¢). (2.245)
n=1

Now for convenience, we shall take the mathematical model from the frequency aspect
domain to the image domain using the 2-D inverse Fourier transform. This can be donein
four steps. Thefirst step in the transformation is to use some approximations to simplify the
amplitude dependence functions by using the approximation

k%~ exp(—wry) (2.246)

where r,, is an estimated damping factor. Then we let the term j~be included in the
complex amplitude A,,. The second step involves changing the polar coordinates of the
model into Cartesian coordinates using the transform

Wy = WCOS @ and Wy = wsin ¢. (2.247)

The transformation assumes the data is sufficiently narrow bandwidth that smple
interpolation to rectangle grid is possible or in other words with small angle spans,
wry, & w,ry. Thethird step involves using window functions in the frequency and aspect
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angle domain to suppress side lobes (similar to the digital spotlighting). The window
functions are assumed separable and can be written as
W(waz, wy) = W (wz )Wy (wy) (2.248)

where

Wa(we) = ZBT ) exp(jwap)

Wy(wy) = ZBy q) exp(jwyq)

are the window functions which can be Hamming, Taylor, or rectangular functions. The last
step in the transformation is using the 2-D inverse Fourier transform to move into the image
domain

s _ . “2 A " Bw Ln COS ¢n
e (te,ty) = "ZZ )sinc f(wy — wy tan ¢,,)

2y
exp (wy[ Vn +.7(— +q +ty)])
2z,
exp (wz[—rn +j(7 +p+ tI)]) dw g dw, (2.249)

wherew,1and w,» arefirst and last frequencies of w,, and likewisefor w,,. Now the equation
can be solved for atrihedral using the fact that the trihedral is alocalized scatter, that is
Ln =0,

P

< 2yn
ltanty) = 43D BB e (el + L + g+ )

p=1g¢=1

L 2xy,
+ €XpP (wmc[_rn +](T +p+ tr)])

smhc(Q2 [— rn+g(2— +p+ta )])

. Q, 2yn
-sinhc (?‘/ (=7 + .7( Y +q+ ty)]) (2.250)
where
Qr = W — Wy and Qy = Wy — Wyl
Wre = —wa ‘;wa:l and wyc = —wa ;‘wyl
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sinh(x)
—

Although the above mode provides results that agree very well for data collected at
traditional SAR frequencies, the mode quickly diverges when the data is collected using
FOPEN and GPEN radar frequencies. The FOPEN and GPEN radars operate at frequencies
in the VHF or low UHF ranges (MHz range) and use a wide-bandwidth radar pulse to
achieve the desired resolution at the lower frequencies. The model just developed which
serves asabasis for multiple SAR ATR agorithms makes use of the narrow frequency bands
and the small wavelength of the radar wave to image the conventional size trihedral. Neither
of these assumptions are true for the FOPEN or GPEN cases. The conventional size trihedral
can no longer be modeled using the GTD. The received radar pulse must be modeled using
numerical algorithms such as method of moments (MOM). The modeling of the trihedral is
further complicated by the fact that the wavelength of the VHF and low UHF radiation is so
large compared to conventiona sized trihedral that the ground—air interference can no longer
be separated from the individual trihedral. This should also provide major problems with
complex objects consisting of multiple interfering structures.

The development of the mathematical model for the received radiation from a
conventional size trihedral begins with some nasty electromagnetic equations [14] . Lets
begin by writing the equation for the electric field in spatial location r = («, y, z) produced
by asurface current at a different spatial location ' = (2, 4/, 2’) asfollows:

sinhc(x) =

. 1 / / !
E(r) = |—jwu(r)I + o) VV} . . G(r,r")J(r")dS (2.251)
where E(r) isthe electric field at spatia location r, J(r’) isthe surface currents produced at
r’, I istheunit dyadic, p(r) isthe permesability, £(r) isthe permittivity of the inhomogeneous
background, and G(r, r") represents the dyadic Green’s function for the background medium.
Now lets assume the 3-D trihedral is a perfect electric conductor (PEC) and also assume far
zone backscattering. The éectric currents induced on the surface of a PEC trihedral can be
solved by MOM techniques. In the case of the electric field in free space, the following
simplifications can be made:

u(r) = po,  £(r) =¢€o
and

exp(—jko|r — 1’
G(r,r") = (zx + yy + 22) (47r|r(i ] b

(2.252)

Then atriangular patch discretization of J (') is performed. The nonzero elements of
G(r,r") can now be represented as a Sommerfield integral, which has the form

M%ﬂz%éf%mﬁMMW%

where¢ = /(z — 2/)2 + (y — y')% + (2 — 2)2. The developed equation has the solution
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kernels, which in themselves are highly oscillatory. The numerical solution of the equation
can be formed using the Weyl identity, which is
exp(—jkR) 1 / OO
0

4R T or

ok exp|—jk:h(z, 2')]Jo(kp&)kpdky, (2.253)

where

k=\/ki+k2 and R=\/(z—a')>+(y—y)?+h2(z —2).

Now assume the soil can be represented as a general layered medium, so we can
approximeately evaluate the integral for a source observed in layer i by

A exp [—jk.ig(2,2")]

k) = 2 j.%f%( Lk, (2.254)
A M

hm h(kp) + Z QA exp(_kﬂbm)

kp—00

exp [—jkzig(2,2')]
j2kzz

m=1

where a,,, and b,,, are estimated along appropriate line in complex k,; plane using Prony’s
method. The above method is applied separately for each components of the Green's
function dyadic. Then by placing (2.254) into the Sommerfield equation in terms of sum of
components where each component can be integrated in closed form.

The problem of SAR ATR using FOPEN frequencies has been preliminarily attacked
using smple scattering physics [2] . The approach uses computational electromagnetic
algorithmsto generate signatures and match filter banksto span the target space. The FOPEN
SAR ATR problem posses specia problems due to the fact that at FOPEN frequencies
objects are made up of few scatters which vary usually with angle or polarization.

The first stage of the algorithm by Mark R. Allen in 1996 deals with the detection of
man—made targets from clutter. Theinitial detection stage models all man—-made targets
as along principle dihedral formed between the side of target and the ground. The radar
response of adihedral at FOPEN is a single narrow peak in azimuth angle whose power
varies according quadratic function of frequency with polarization responseof HH = V'V
and zero cross polarization. The result of thisisaline segment in the SAR image whose
length is proportional to the physical length of the object. The phase of thisline will be a
bi-linear function whose slope depends on the relative orientation of the radar to the target.
Non-man made objects, such astree trunks, are modeled aslossy vertical cylinders, which
has an RCSthat isauniformly distributed function in azimuth angle. The assumption causes
the trees to appear as point like responses in the SAR images. The stage is performed by the
matched filter image formation (MFIF) subunit. MFIF uses matched filters constructed from
computational electromagnetics spanning various azimuth angles to search each pixel in the
test image.

The second stage is formed by the complex spatial matched filtering (CSMF) subunit.
The second stage uses the same model as the first stage but is designed to match al pixelsin
the image corresponding to the target rather than one pixel at atime. The CSMF subunit uses
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the computational electromagnetic calculated signatures from various dihedrals at various
orientations. The actual identification is performed through a successive level of recognition
using greatest likelihood test. The process so far has only been presented in theory with no
published testing of the algorithm using real or simulated data.

There are several more papers dealing with SAR imaging formation, enhancement and
modeling with ultra-wide bandwidth FOPEN radar signal [32] [35] [42] and [45] . In
the sense of parametric study, those paper address the problems and modeling techniques
associated with radar signals in large frequency variation (wide bandwidth and very low
frequency). Mostly, we just view them as other type of radar signal. However, the changing
in modeling and imaging formation techniques discussed in those paper can help as
understanding the effects of frequency variation. There is another set of paper collections
dealing with target detections using ultra—wide bandwidth (UWB) FOPEN radar [7] [23]
[34] and [47] . Those papers discussed detection of targets in foliage or under ground using
UWB radar. Those papers utilizing the frequency variation to detect targets, however none
of them addressing the ATR problems. In conclusion, we have not found any research paper
to deal with ATR performance under the influence of radar frequency variation. However,
some of the paper discussed affects of frequency variation in image formation that may have
some indirect link to the performance of an image based ATR algorithms.

2.2.2 Polarization

Another sensor parameter which has an enormous effect on the SAR image, is the
polarization used for the radar pulse. The polarization of the electromagnetic radiation used
by the radar affects how the geometry of the object will scatter back the radiation from the
radar.

The polarization of the radar pulse as well as the received wave can take on numerous
forms. The radar system for MSTAR uses H H polarization, which means the transmitted
radar wave is horizontally polarized and the receiver radar will record reflected horizontally
polarized radiation. A SAR systemcanbesetuptouse HH, HV,VH, VV, or even a
combination of polarizations. The use of multiple polarizations clearly has a beneficia
effect on SAR ATR systems by increasing the amount of information that the radar receives
from the scene. When al polarizations are used to form the image, the object in the imaging
scene become clearer, and the edges become sharper because the datafrom HH and HV
polarizations, for example, fill in the areas of objects and edges that do not register in the
V'V polarized data. The potential benefits of using data with multiple polarizations seem to
be striking but largely ignored in the published SAR ATR literature.

The mathematical modeling of polarization seems to aways attack the problem by
using the genera equations and vectorizing them to include multiple polarizations. The
mathematical models developed earlier for Spot and Strip SAR can be modified to include
multiple polarizations by simply using matrices and vector in the pervious equations with the
justification that the equations were devel oped without knowledge of the polarization used.
So defining one equation as H H polarization, a second equation for V'V polarization can be
defined with the same form because polarization was never mention as a parameter.
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The biggest and most compl ete work that was found in the public SAR ATR literature
using polarization was from Lincoln Laboratory. Lincoln Laboratory used their SAR ATR
algorithm to evaluate targetsimaged at asingle H H polarization verses targets imaged using
three polarizations (HH, HV, VV) [30] . Thethree polarizations were combined using a
Polarimetric whitening Filter (PWF). The PWF uses a polarimetric method to reduce large
amount of speckle in the image that is cause by the coherent nature of the imaging process
while maintaining resolution of the image[29] .

The PWF process begins with the mathematical modeling of the polarimetric radar return
from clutter. The polarimetric radar measurement vector can be represented as

HH HH; + jHH,
y=| mv | =| BV, +jHY, (2.255)
%% VVi+jVV,

where for example H H; and H H, are the in-phase and quadrature components of the
received complex H H signal. The return model assumes a non-Gaussian product clutter
model [29] . The assumption implies Y isthe product of a complex Gaussian vector X that
represents the speckle and a spatially varying texture variable g, which gives

Y=g X (2.256)
The probability density function of the z is given by

f(X) = ﬁ exp (—XTS71X) (2.257)

where X is the polarization covariance matrix and X has zero mean. The covariance matrices
used in the devel opment were defined as

( 1 0 pﬁ)
Y=ouyn 0 e 0 (2.258)
VY 0y
where
E{|HV|?
oun = B{mAP)  awa =T
_ E{jvvpe} _ E{HH-VV}
R D N e T

The product multiplier g used in the development of the PWF is modeled as a gamma
distributed random variable. Although the authors mentioned the possibility of using log
normal or Weibul distributions, the use of the Weibul distribution would have probably
bettered the results. The probability density function (pdf) of the product multiplier with a
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gammadistribution is given by

falg) = % <§>H F(ly) exp (?) (2.259)

whereg-v = E{g} and 3> - v(v + 1) = E {4 }. The gamma distribution assumption
causes the pdf of the return vector to become amodified Bessal function or more specifically
a K—digtribution function that represented by

FY) = —2 Koo (2/25) . (2.260)

T mg T3 (gYTE—lY)@;_VZ

Now that Y has been developed, the return vector must be processed to get maximum pixel
intensity while minimizing speckle. The speckle can be measured as the ratio of the standard
deviation of the image pixel intensities to the mean of the intensities, that is

5 _ &t. dev. of y (2.261)
m mean of y

where y isarandom variable represents pixel intensity. So we need to find aprocess (A) that
can construct the best image possible from the three polarized images collected. In other
words we want to construct the image from the quadratic

y=YTAY = gXTAX (2.262)
where A is aweighting matrix assumed to be Hermitian symmetric and positive definite.

The determination of A involves the minimization of -* for agiven mean value of the pixel
intensity. The solution to this is based on the following derived relations

E{XTAX} = tr(Z-A) =) N (2.263)

NE

(2

Var {XTAX} = tr(Z-4° =) X\ (2.264)

=1

where E {-} is the expectant value, Var {-} isthe varianceand \;,i = 1,2, 3. arethe
eigenvalues of the matrix X - A. Combining equations (2.261), (2.262), (2.263), and (2.264)
gives

s\?2_Var{y} v+1 Zf’: A 1
) =y = (Z?’_fAi)ﬁ”' (2269
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Since v is constant, we can minimize the ratio by minimizing the term
3 2
YL 5 (2.266)
3
(Zi:l Ai)

Now if we assume eigenvalues AT = [A1, A2, As] is aminimized solution, then so is

oA which means we can achieve minimization by minimizing the numerator with the
constraint that the denominator is equal to one. The numerator can now be minimized using
aLargrange multiplier 3, that is, to minimize the following function of A:

F)=>N+8 (1 — (Z Ai> ) : (2.267)

The minimization can be accomplished by taking the partial derivative of f (\) with respect
to \; and setting them equal to zero

af (\) ’ .
=2\ —2 ;i =0, fori=1,2,3. 2.2
T A 6;A 0, fori 3 (2.268)
The minimizing solutions are
3
ANi=B8-) N, fori=1,23. (2.269)

i=1

that implies A\ = Ay = A3. Thismeansthe weighting matrix A* should be chosen such that
the eigenvalues of matrix X - A are equal which implies the minimizing solution is

A*=x-1, (2.270)

The whitening process can now be represented as

W=%"?Y=,gs *X (2.271)

where W has elements which are independent complex random variables and their
covariance matrix is an identity matrix. The singleimageisformed and the optimal solution
is obtained by simply noncoherently summing the powers of 1. The entire process can be
thought as converting the received data (H H, HV', V'V) to the new basis given by

HV  VV-—p"HH

Wt = |HH (2.272)
Ve (L= pl?)
and then summing up the three new components in the new basis to form the image
y=W?(1)+W?32) + W3(3). (2.273)
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Lincoln Laboratory used PWF in testing their algorithm with different polarizations [30]
. The data consisted of two vehicles (Howitzer and a Tank) and clutter data consisting of
no targets imaged with H H polarization and using multiple polarizations combined into a
single image with PWE The PWF data resulted in a slight increase in tank identification and
decrease in tank mis-identification.. The PWF data showed a large increase in the correct
identification of the Howitzer while decreasing the mis-identified Howitzers. The most
stunning effect was the 90% decrease in clutter being misidentified astargets. Although only
two targets were used, the results were very interesting. The technique should provide an
increasein all SAR ATR algorithms, which use the SAR image or features derived from the
SAR image identification.

A new and developing area of research into polarization and ATR is the exploration
in choosing the best transmit and receive polarization states for each target to improve
identification [40] . The use of different polarizations states for each target class can provide
maximum separate on target classes and maximize the performance of ATR algorithm.

The mathematical model describing the polarizationsisfirst developed [40] . An arbitrary
electromagnetic wave can be completely characterized by specifying its wavelength, phase,
amplitude and polarization. We will assume the electric and magnetic components of the
wave are perpendicular to direction of propagation, and the tip of the electric field vector £
will trace out an ellipse in a plane whose geometrical properties are given by dlipticity X
whose value is equal to the angle between the mgjor axis and aline joining the points on the
ellipse of the mgjor and minor axis, and the ellipse orientation angle ¥ whose valueis equa
to the angle between the major axis and the horizontal axis. The polarization of an EM wave
can also be represented using stokes vector

Iy I
_ Q | Iocos(20) cos(2X)
F= U N Iy sin(20) cos(2X) (2.274)
4 Iysin(2X)

where [, isthe intensity of the wave. Thevalues Q, V, U are called stoke parameters and are
related by
I =Q*+V?+ U~ (2.275)

The response of a target from an incident radar wave can be represented by the polarimetric

scattering matrix
Es, \ [ Swn Sho Ein
( Esv ) o < Svh Sm) > < Eiv > (2276)
where E; and E; are the scattering and incident waves respectively. .S matrix is the
scattering coefficients for a given orientation of transmitting and receiving. The knowledge
of the scattering matrix allows the calculation of the response of the target to any incident
polarization wave. Instead of limiting ourselves to only horizonta and vertical polarization,

we can use the technique of polarization synthesis to model the response of the target to
signals with polarization specified by X’ and . This can be done by the use of a Mueller
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Matrix
M =RWR™! (2.277)
where W is a complex matrix

S:;q;sm) S:thh, S:;thv S:q;Svh,
SioShe SipSun SipShe ShyShi
S?;,vSUU S;:,thh S;;,hSUU S;;USU’Z

SouvShw  SupSen - SypSnv S5yShh

W = (2.278)

In which, S;,. are the complex scattering coefficients defined in (2.276), ¢ denotes transmit
orientation and r denotes the received orientation. And the complex matrix

1 1 0 0
1 -1 0 0

R=| o o 1 1 (2.279)
0 0 —j j

With the Mueller matrix, the radar cross section (RCS) for any scatter at any polarization can
be expressed as

Ert = 47TFT7TFt. (2280)

Using the above equations, it should be possible to pick the polarization that will produce
the largest separation between two given test objects. The problem can be stated as seeking
the feature vector = which maximizes the distance J( f) between elements of ¢ classes. The
distanceis defined as

nj

J(f) —%2323’”2 izé(fik;fjl) (2.281)
1= J=

I k=1 1=1

where é( fir, f;1) is the distance between two feature vectors f;;, and f;; from classes
w; and w; respectively. n; and n; are the numbers of training patterns in classes w; and
w; respectively. P; and P; are their corresponding prior class probabilities which can be
estimated by the frequency of occurrence

P~ (2.282)
n

The general approach is to find a polarization which will maximize the distance between
the targets of separate classes and at the same time minimize the distance for the targets
within class. For atarget class model in polarization orientation angles (X', ¥), the angles
can change from 0 to 2x. For reducing the computational burden, 8 levels of quantization
for each angle are used. Therefore, there are 64 samplesin each target class model for all the
polarization orientations. For each target class with n samples, the total number of distances
needed to be computed is @ For ¢ number of classes, the number is quickly leads
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to avary high computational burden: ﬂc;’—’ll distance calculations and searching the
minimum and maximum results.

Theworksin [29] , [30] , and [40] show the applications of using polarization to enhance
the appearance of SAR image and to classify/recognizing target. There are couple more
works using polarization in detecting target [59] and [41] . In conclusion, RCS's of scatters
at different transmit and received polarization orientations show great variations depending
on the geometric shape of targets. It should have great impact on the performance of image
based ATR agorithms. However, the research in this areais very limited.

223 Squint

Compared with SAR in broadside mode, SAR in squint modes produces variations in phase,
range migration, Doppler centroid, and azimuth bandwidth. Those variations must be taken
care of in the imaging formation algorithms for best performance. The changesin squint
angle will certainly produce variations in SAR images and in the performance of ATR.
There are many variations, that some of the basic ones have been explained in the brief
section, in squint mode SAR imaging processing algorithms. However, there are no prior
work to address the change of image quality or ATR performance due to the squint angle
variation. We did come across several interesting papers. Thework in [9] has compared a
number of squint image algorithms under the narrow—bandwidth and narrow—beamwidth
assumptions. Their results show that at a larger squint angle, their more efficient real-time
SAR imaging algorithms only produce a slight degradation (in azimuth resolution) compared
with conventional stripmap SAR at alarge squint angle. Sun etc. [48] developed a new
approach to process high squint SAR imagery referred to as time varying step transform
(TVST) agorithm. Compared with conventional squint angle imaging algorithm, the TVST
algorithm produces SAR images with higher azimuth resolution at the large squint angles of
30°, 40°, 60°. It also ensures the SAR image has uniform resolution and uniform distribution
in azimuth independent of the chirp rate variation of the radar signal. The good performance
of TVST agorithm comes with a price of dightly increased computational load. Another
related work [12] proposed a new conical geometric reference system to solve the datafocus
problem when there are slight instability in squint angle (< 5°) during data acquisition.

The work developed by Hanle [16] address the mathematically model of the affects of
squint angle on the polarimetric response of targets. The collection of datain squint mode
causes variation in the polarimetric response of targets, which need to be taken into account
for maximum SAR ATR performance. An Antenna manufactured to transmit and receive
vertical and horizontal polarized waves at broadside will produce polarized wave that vary
differently and are in some cases non-orthogonal at off broadside directions. Let the matrix
M represent the measured matrix of atarget off broadside and more specifically

M=A -7 A (2.283)

where Z isthe target polarization response at broadside, A, is the antenna transformation
matrix modeling receiving, and A; is the antenna transformation matrix modeling
transmitting. Now if we assume the use of a monostatic radar and that the transmit and
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receive orientations are the same, the following simplification canbe made A = A, = A;.
For the devel opment of therest of the mathematical equations, we note that the matrix A can
be represented by a directional projection matrix F, a gain factor 2, and a supplemental
matrix. The supplemental matrix is a function of the squint angle 3, azimuth angle
(divergence angle) «, depression angle ~y, and elevation angle . The variables can be shown
to have the following relations:

sinff =sinacose and = —e¢. (2.284)
The gain factor is defined by
d? = cosf = cosacose cos § + sinesin (2.285)

where @ is the off broadside angle and ¢ is the angle between the antenna horizon to the
broadside. The polarimetric matrix of the return from broadside using a uniformly emitting
planar array with well-matched el ements can be represented by

. ap bv . Ay bv aq 0
F= < _bh Ay ) N < _bv Ay ) ( _bd 1 ) (2286)

1 1

by = ——— and b= ————
\/1+o;2 V1+o,°

ap, = \ll—b% and (lq):\/l—b%

with o5, = tan asine and o, = tan a:sin §. The projection matrix can incorporate squint
angl e effects through the introduction of the rotation matrix in (2.286)

aq 0
—bg 1

where ag = apa, + bpb, and by = bya, — apb,. Now we can recover the target matrix Z
from the measurement A by the polarization matrix A which isformed by the projection
matrix [' and afew other parameters.

where

M. =A"TMA '~ Z (2.287)

224 Depression Angle

Depression angle is the sensor parameter that determines how the el ectromagnetic scattering
from the three-dimensional object will project to the two—dimensional SAR image plane.
The variation of depression angle has dramatic effects on the appearance of real targetsin the
SAR image. The depression angle is defined as the angle between the radar and the image
plane. Sinceinmost of SAR imaging algorithmsthe signal processing is performed on aslant
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plane, the depression angleis assumed to be fixed at agiven angle. Variation of depression
angleis probably the most widely studied of all of the sensor parameters. Some image based
SAR ATR algorithm published has performance evaluation run on the data collected from
different depression angle. All of the ATR algorithms showed significant degradationsin
performance when depression angle was changed. However, due to the limited availability
of data on different depression angles. For example, the MSATR database only have data
sets with two different depression angles. There are no systematic study of depression angle
variations to quantify the level of degradation in ATR performance.

2.25 Motion Compensation

In order to form high-resolution SAR images, the radar system must correctly integrate the
coherent radar returns at each synthetic aperture position. The success of this process relies
on compensating the system to account for all possible cases of phase variation except those
caused by the imaged scene. Phase error can be introduced through the movement of the
sensor on the collection platform by more than a wavelength from the ideal trajectory or
from the change in propagation effects of turbulence in the troposphere or ionosphere [10] .
Although a number of motion compensation agorithms have been introduced, al of them
deal with either keeping better track the position of the sensor or using the collected data
itself to estimate phase error [54] . Sensor platform motion compensation algorithm is also
referred to as auto focus algorithm. A more detailed discussion of trajectory deviations in
sensor platform can befound in [11] .

The Phase Gradient Auto focus (PGA) is currently one of the most widely used motion
compensation scheme that uses the data collected to estimate the phase error [54] . The
PGA agorithm offers near diffraction-imited restoration, independence of phase error
order, immune to high background clutter, and without the need of bright isolated point like
reflectors. The PGA algorithm relays the redundancy of the phase error information in the
image to generate an estimate of the phase error.

The PGA technique can be divided into four main steps: 1) circular shift; 2) windowing;
3) phase gradient estimation; 4) iterative correction. The PGA agorithm begins with the
complex phase degraded SAR image and the phase degradation is independent of the scene
content and the image formation process. In fact the only assumption made is that the phase
is coherent over the entire image scene. The range compressed phase history domain data
can be expressed as

En(u) = |Fu(u)| exp [, (u) + jo. (u)] (2.289)

wheren isthen'” range bin, u isthe position of the synthetic aperture (cross—range), | F}, (u)]
isthe magnitude, ¢,,(u) isthe phase and ¢, (u) isthe uncompensated phase error. It is shown
that the uncompensated phase error is only a function of aperture position independent of

range. It means the uncompensated phase error is common to al range bins and independent
of n. Now we can use azimuth compression so that each line of image datais asum given by

f.u—»ku {Fn(u)} = Z h(ku) * am,ns(ku - kum,n) (2289)
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where h(k,) = Fu—k, {exp [j¢.(u)]} isthe Fourier Transform of the phase error function,
* denotes convolution and a,, S (ky — kum,n) 1S theimpulse response of the imaged scene.

Thefirst step of the PGA algorithm isto select the strongest scatter a,, in each range bin
and shift it to the origin of the Doppler domain k,,. The shifting operation is carried out
using acircular buffer where samples shifted off one edge of the range bin is replaced on the
opposite edge of the range bin. The process has the effect of removing the frequency offset
due to the target k.,,,. The process has the added benefits of improving the signal to noise
ratio, aligning regions with subtle contrast changes, and improving the phase estimation of
high clutter scenes.

The second step of the PGA agorithm involves windowing the circularly shifted data.
The windowing process maintains the degraded point spread function of the dominate scatter
in each range bin while removing data unnecessary to phase estimation. The size of the
window used to process the information is an important parameter of the algorithm. Auto
window sizing makes use of the fact that scatter in each range bin undergoes the identical
blurring which means an estimate of the blur can be obtained by averaging the blur over dl
range binsusing

s(ku) = > | fu(ku)l® (2.290)

where f,, (k,) isthe circular shifted image data at n*" range bin. The function s(k,,) will be
maximum at k,, = 0 (due to the circular shift) and plateau approximately W in the width of
the window. The exact width of the window can be chosen by using automatic amplitude
threshold over function s(k,,) with some added safety factor, say plus 50% in width. Since
the change of amplitude shape of function s(k, ) reflects the convergence of the iterative
focusing correction process, the auto window sizing threshold can be used to evaluation of
the speed of convergence of the algorithm.

The third step of the PGA agorithm involves phase gradient estimation. Let g,,(k,,) be
the shifted and windowed image data. The Fourier transform of g,, (k) is

Gn(w) = Fry—u {gn(ku)} = [Gn(u) exp[j0n(u) + jo. ()] (2.291)

where 6,,(k,,) is the scatter dependent phase function for each bin. Now an estimate of the
phase error can be generated using the fact that for an arbitrary complex valued function

x(u) = |z (u) | exp [j(u)], (2.292)
the derivative of the function is equal to

dr(u)  Im{z*(u)z(u)}
T = T (2.293)

Therefore, the weighted least squares estimate of the gradient of the phase error function is

>, Im{G, (WG (u)}
2o |Gr(u)?

d(u) (2.294)
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The estimated phase error ¢(u) can be obtained by the integral of the estimated gradient
function ¢(u). The phase error can be removed by simple multiplication of the phase error
by exp [~ (u)).

The fourth step is ssimply continuing the phase estimation and correction process until a
suitable compensation has been reached. Although the PGA technique is computationally
intensive, PGA provides the best overall results.

The PGA algorithm has recently been extended to correct two—-dimensional (2-D) phase
error [55] . In most cases, 2-D phase error can not be completely corrected by autofocusing
algorithms which corrects the phase error in one-dimension (1-D) separately. The PGA
algorithm however, can be extended to 2-D to deal with 2-D phase error. The 2-D PGA
maintains al of the same advantages as the 1-D case while becoming more robust to the
type of error the algorithm can handle.

Phase Retrieval is a second motion compensation method that works directly with the
raw data[19] . Phase Retrieval has been designed to deal with 2-D motion error instead
motion instability being dependent only on azimuth co-ordinate (1-D) and high frequency
error instead of simply low frequency error modeled such as a polynomial. PGA does not
generally deal with either error well.

“AutoClean” (AutofocusviaClean) [1] isanother newly devel oped motion compensation
algorithm which ismainly for inverse SAR (ISAR) autofocus. The authors claim it performs
similarly as PGA agorithm. However, it is dlightly better than PGA agorithm for ISAR data
where the range migration correction is not available.

Another area of motion compensation is for UWB FOPEN stripmap SAR [8] . The
paper surveyed motion compensation algorithms for widebeam SAR data and developed a
improved version of motion compensation algorithm for UWB stripmap SAR. The algorithm
aimed to deal with the required variations in motion compensation asthe function of azimuth
beam angle (divergence angle) which is very wide for UWB FOPEN stripmap SAR.

2.26 Noise

The noise content of the images used for training and testing has large effects on the
performance of SAR ATR agorithms. There are multiple causes of noisein aSAR image and
all sources of noise can never be eliminated. Noise in a SAR image must be accounted for in
order to maximize the performance of any ATR algorithm. The best way to understand the
effects of noise on SAR ATR algorithmsis to develop the mathematical model representing
noise in the SAR image. We found one prior work [22] that investigated the influence of
noise to the performance of atemplate-based SAR ATR algorithm.

The noise present in a SAR image has been shown to be multiplicative in nature. The
SAR image can be thought as being a combination of radiation reflected energy S; o from
the desired target type ¢ at a certain azimuth pose angle 6 and noise w which is a zero-mean
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Gaussian independent identically distributed random variable
I(m,n) = St.9(m,n) +w(m,n). (2.295)

Although there have been multiple distributions proposed for w(m, n), the mean is always
approximeately proportional to standard deviation, that is

\/E{[I(m, n) — E{I(m, n)}]Q} = C-E{I(m,n)} =C-Sg(m,n)  (2.29)

where C' = /E {w?} — 1 which depends on the shape of the distribution chosen. The
noise in SAR images has been shown to best fit a Weibull distribution that is approximately
Rayleigh. A Rayleigh distribution arises from diffuse scattering, which comes about from
alarge number of similar strength isotropic reflectors. The noise calculated from pixelsin
the target area has been shown to fit a Weibull distribution too, but it also fit alog—nominal
distribution. The ability to use two different approximationsin the target region is due to the
nonisotropic scattering mechanism, which are caused by aspect angle variation, or in other
words, caused by unstable pixelsin the target. The ability to use two different modelsfor the
noise distribution over target pixels explains why different statistical based approaches to
SAR ATR yield approximately the same results.

The mathematical models for the noise can be written as

it = s () o () st

using the Weibull probability distribution function where v is the unit step function, ¢ isthe
shape parameter, and b(m, n) is ascale parameter chosen so that the image has a unity mean.
The Weibull probability distribution becomes a Rayleigh distribution when c isset to 2. The
log—normal PDF is given by

B 1 =1 5 (1I(mn)
P{I(m,n)} = o ol o) exp [202 In (V(m,n))] w(I(m,n)) (2.298)
where o is a shape parameter and v(m, n) is scale parameter that is equal to the template
St.o(m,n).

The knowledge of the mathematical model representing the noise in an image can be
used to better the performance of SAR ATR algorithms. The advantage of modeling the
multiplicative noise using a log—nominal distribution is that when the image is converted
to the log—magnitude domain the noise becomes additive and Gaussian. For the noisein a
Rayleigh distribution, the optimum technique is to apply a quarter power transformation
on the image, which causes the noise to become approximately Gaussian but remain
multiplicative.

2.2.7 MultiHook/Singlelook

Many platforms use radar antennas which poses very large beamwidth in the azimuth
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direction. The large beamwidth allow targets to be illuminated in the collection cycle for
amuch longer period of time than is needed to obtain a desired azimuth resolution [46] .
Although wider integration angles would increase resolution, the implementation of phase
correction or focusing requires the storage of the phase histories of each range bin equal to
the length of the synthetic aperture. Modern SAR systems often are limited by the amount
of datathat can be stored during a given collection cycle. The potential long collection times
also allow the formation of several images using smaller sub—apertures of the same scene
with avery small change in antenna look angle. In order to compress data collected and
reduce speckle, several of the images at different “looks” are combined to form one image
[25] . The process of combining the several 1ooks to form one image can be done through a
weighting matrix or aweighting vector.

The variation of the target signature using single and multiple looks seem to be absent
in the literature. The consensus seems to be that multiple looks provide speckle reduction
and more stable target scattering behavior than the one from single look with no real data or
experiment to back up the conclusion. One of the few articles dealing with multiple look
data and target and clutter behavior used multi- ook fully polarimetric data[26] . The article
focused on effects of various agorithms that combined the multi- ook data into a single
image on clutters and targets.

The first process to form multi-look data using a weighting matrix is called the
multi-look polarimetric whitening filter (MPWF) in [25] . Consider the following
multi— ook polarimetric covariance matrix from the fully polarimetric radar measurements
Y =[HH HV VvV]"

N
1
Sy =+ ; Y;Y/ (2.299)

where Y; isthe j" look of sample Y. The speckle model in the multi-Hook covariance
domain is Xy = gXx dueto the fact that the speckle appearing as multiplicative noise
Y = ,/gX (2.256) where X represents speckle. Since the polarimetric radar measurement
Y contains energy from target and clutter, we have

Yy = e clutter class (2.300)

Yert = 2.+ X target—plus—clutter
E,; target class

where X, and ¥; are the covariance matrices of clutter class and target class respectively.
However, the covariance matrix of clutter class X.. can be calculated from known clutter

samples. Using the same process as before W = X, 3 Y (2.271) except the use of the
multi-look covariance matrix >y instead of the individual image sample Y, we can have

By =718y = g5 18y, (2.301)

If the multi-Hook datafrom aclutter area, By = X'y = ) - I iswhitened. If thedatais
from a clutter—plus—target area, By = ¥, 1%y = A - [ + ¥ 1%, Thisinformation can be
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used to classify targets and clutters by a detection threshold T'

N
W= < SV = i (571y) = (2:302)

Jj=1

>T target
<T clutter ~

W isasingleimage formed by the multi—look polarimetric data with clutter suppression..

The second process to form multi- ook data using a weighting matrix is called the total
Power (Span) detector [26] . Thetotal Power detector process simply replaces the weighting
matrix ;! used in the MPWF with the matrix

100
A= 0 2 0 (2.303)
00 1

and the remainder of the processis the same as before.

Instead of using aweighting matrix to transform the multi-look covariance matrix 3y
into a single image, methods have been developed using a weighting vector. The weighting
vector process can be represented by

_ T ) >T taget
W=e Yy e= { <T duter (2.304)
and it can even be transformed to matrix representation
o _ | >T taget
W =tr(X.Xy) = { < T clutter (2.305)

where X, = e - ¢7* [26] . The process using weighting vectors to develop the combined
image from multi-look imagesis the polarization match detector which is represented by

Wo =el* - By - e (2.306)
where eq is chosen by maximizing the equation

eOT* - e
r= T, o (2.307)
The maximum value for r turns out to be equal the maximum eigenvalue of the matrix
¥713, and e isthe corresponding eigenvector. After find eg, 3. = e - el * can be used as
part of the weighting matrix to form the polarization match detector.

Another multi-look processing technique using weighting vectorsis called the max and
min power detector [26] . The max and min power detector relies on the assumption that
the polarimetric covariance matrix is Hermitian and at least semi-definite positive. The
diagonalization of such amatrix will aways yield non-negative el genvalues and orthogonal
eigenvectors. The polarization synthesis theory states that the maximum and minimum
eigenvalues of the covariance matrix corresponds to the maximum and minimum receptions.
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The diagondization of the polarimetric covariance matrix X (2.258) can be represented as
(&3] 0 0
=D 0 a 0 |D (2.308)
0 0 Qa3

where a1, as, and a3 correspond to the eigenvalues in the order of maximum to minimum
and D consists of the eigenvectors ey, es, e3 of the matrix 3. Now we can use

Y =e;-el, i=1,2,3

as stated before the max and min power detector.

The last multi-look processing agorithm is called even and odd bounce [26] . The
Algorithm begins by decomposing the polarimetric covariance matrix Y. (2.258) into three
components or more precisely:

R 0 B4
n+ n+
n o= A MIES 0 0 "0 (2.309)
2\/7_7 20" /Y 0 1
VoS
4lp*y 2p\/7
NN 0 &=V 000
+A2 0 0 0 +X3] 0 1 0
2\ e g 00 0
Vi+E

where¢ =~ — landn = &2+ 4|p|* .

The radar return from a complex scene can now be modeled as the non-coherent sum of
the returns from three simple targets each having their own scattering matrix as represented
above. Thefirst two terms represent orthogonal scattering mechanism to each other and
the third term represent diffuse scattering from randomly oriented scatters. The Scattering
mechanisms can be determined using Van Zyl’s approach which states if real part of p is
positive then the first matrix appears as odd bounce scattering object with the maximum
eigenvalue of this matrix representing the odd bounce power. The opposite is true (even
bounce instead of odd), if rea part of p is negative.

It was presented in [26] that real SAR data was used to derive polarimetric covariance
matrix parameters of pure clutter as well as man made buildings. Then using these
parameters along with the derived equations for probability of detection and of false aarm,
the performance of each method was predicated. The methods of MPWF and the polarization
match detector gave the most promising results.

2.2.8 Radar Waveform

Although by far most SAR systems employ chirp signals which have variations in frequency
and bandwidth, we found a small amount of research into aternative radar waveforms. The
most interesting research in this area deals with random noise waveforms. In the university
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of Nebraska, there has been a development of a preliminary FOPEN Ultra-wideband SAR
using arandom noise waveform [13] , [52] and [53] .

The SAR system uses arandom noise signal source that produces zero mean wide sense
stationary Gaussian random process with variance 2. The signa can be represented by

Sn(t) = a(t) cos(wo + &(t)) (2.310)

where a(t) is aRayleigh density, ¢(t) has auniform density between [—, 7], and wy isthe
center angular frequency [53] . The response of the transmit and receive antennas can be
represented by their impulse responses A, (t) and A,.(t) respectively. The signal isthen band
passed

Sp(t) = By(t) * Su(t) (2.311)
where B),(¢) is the impulse response of the band pass filter. And the transmitted signal
becomes

Se(t) = As(t) * Sp(t). (2.312)

If the impulse response of the target is modeled with h(¢), then the received signal can be
represented by

Sp(t) = h(t)x Ap(t) * Si(t) (2.313)
= h(t) x A.(t) x A(t) * Sp(t).
The received signd is then passed through a correlation receiver which does a cross

correlation of the received signal with the delayed band pass limited version of the original
random signal S, (¢ — 7) which yields

Ryt(1) = S.(t)*S;(— / Sr(t)Sy (T +t)dt (2.314)
= h(t) x Ar(t) * As(t) * Rep(7)
= h(t)x P(7)

where P(7) = A,.(t) x A;(t) * Rpy(7) isthe point spread function of the system and

Run(r) = Sy(t)Si(— / Sy(8)S3 (7 + 1)dt (2:315)

By(t) * Sn(t) * 55, (—t) * By (1)
= Bp(t) * Rnn(7) * By(—t)

isthe autocorrel ation function of the bandpassed random noise. R,,,,(7) istheautocorrelation
of the random noise signal before bandpass filtering. The random noise signal waveform
provides the advantages of being harder to detect than the chirp signal and harder for third
party to interfere and jamming. The system on the whole however is still very preliminary
with some significant obstacles till needed to be overcome before wide spread use.
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SAR Parametric Variation Study:
Experiment Paradigm and Data Sources

In the literature review, we have discovered that there are many SAR sensor operation
conditions will affect the image appearance of targets. Due to the complexity and variations
in SAR image formation algorithms, each SAR parameter will have different levels of
influences on SAR image formation depending on the underline algorithm used. The
performance of the image based ATR agorithms will be affected by the variations of SAR
parameters. Due to the large number of radar sensor parameters and limited availability of
SAR image data across the dynamics of sensor parametric variations, we could not find any
systematic study on SAR sensor parameters and their influences on ATR performance. In
order to evauate the performances of ATR agorithms under various sensor OC's, we need
to develop atest and evaluation platform. The test and evaluation platform shall include
the basic components such as 1) a set of baseline ATR algorithms; 2) a collection of real or
synthetic SAR data under various sensor OC's; 3) an evaluation and scoring system. In this
study, we have searched for real experiment data under different sensor OC's. We have also
established the capability to generate synthetic radar data for both simple or complicated
target model under the prescribed sensor OC's. We also identified and implemented a set of
baseline ATR algorithms for the SAR parametric study test and evaluation platform.

3.1 SAR ImageData Sourcesfor Parametric Study

Due to the lack of research into the effects of sensor OC’'s on SAR ATR in the present
literature, it seemed logical to carry out a preliminary experiment trying to quantify how the
variation of certain sensor characteristics affects different types of SAR ATR agorithms. The
experiment was designed to comply with the basic principles of evaluation of performance
of SAR ATR algorithms using extended operating conditions (EOC) [37] . In accordance
with EOC evaluation, the SAR imagery will be divided up into individual slots where each
dot would represent an individual point in the dimension of the OC. The evaluation of
ATR performance due to the variation of the OC’s would be done by training the algorithm
using one value for the OC and then testing using a data set of the same target imaged with
different values for the tested OC.

In order to evaluate SAR ATR with respect to sensor OC's, the experiment first needed
SAR imagery, which varied over the sensor operating conditions to be evaluated. For the
experiment to be most useful, the SAR imagery should contain the same targets imaged at
different depression angles, frequency, polarization, and other parameters chosen for the
experiment. The SAR data should also ideally contain different vehicle versions than those
used in testing, and even contain confusers.

In this section, we will identify various sources of SAR image data suitablefor parametric
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study. In general, SAR imagery data can be classified into two broad classes. Thefirst is
SAR imagery obtained from real objects, and the second is SAR imagery obtained from
simulation. Thereal SAR imagery is much more desirable, but much more limited dueto the
cost of collection and the ability to alter the sensor parameters. In this section, we will also
cover the methods for SAR data synthesis under various sensor OC's.

3.1.1 Real SAR Image Data Sources

The most common source of real SAR imagery is MSTAR data. The complete MSTAR
database was obtained from three different collections done in September 95, November
96, and May 97 [37] . The public release MSTAR datais a subset of the September 95
collection. Sandia National Laboratory using a STARLOS sensor collected the MSTAR
data set at Huntsville, Alabama. The MSTAR data was obtained at X band (9.6 GHz), HH
polarization, and with aresolution of 1ft. by 1ft. The MSTAR data collected did vary over
depression angles. One of the public data sets consisted of targets, which were imaged at
depression angles of 15° and 17°. Another data set consists of different targets that were
imaged at depression angles of 15° and 45°. The narrow depression angle bandwidth in the
first set and the very large separation of depression angles in the second set does not alow
to establish a nice quantitative relation between depression angle variation and SAR ATR
performance.

SAR imagery has a so been collected by the Lincoln Laboratory at MIT [30] . Lincoln
Laboratory collected SAR imagery with a Millimeter wave SAR sensor. The SAR datawas
obtained at 33GHz, with a depression angle of 22.5°, fully polarimetric ka-band, and with a
resolution of 1ft by 1ft. The data collected has images of multiple polarization of each target
including HH, HV, V'V polarizations, but unfortunately the collection contains only two
different types of vehicles.

Another source of real SAR imagery is often referred to as the P-3 data [45] . The P-3
data was collected to understand the detection of stationary targets, which are obscured by
foliage using SAR [49] . The P-3 data was collected in 1995 by a Navy P-3 aircraft for
ERIOM and NAWC at Michigan, Cdifornia, Maine, and North Carolina. The Navy P-3
radar collection was unique because it used a FOliage PENetrating SAR system. An FOPEN
SAR system consists of an ultrawideband (UWB) radar operating at UHF/VHF frequencies.
The P-3 radar used a chirp radar pulse with a frequency band of 215 to 730 MHz. The
collection involved 33 military vehicles imaged with depression angles of 45°, 30°, and
20° and obtained a resolution of .33 M. The targets were imaged in the open and in foliage
consisting of amix of deciduous and coniferous trees. The SAR image was formed using
the omega-K (or Range migration) technique to coherently process wide-band and wide
integration angle raw data [49] .

A non-aeria source of SAR data has been collected by the Army Research lab using an
ultrawide band (UWB) boom SAR [17] . The SAR radar was connected to aboom of atruck
and the truck driven to take SAR measurement. The UWB boom SAR uses aradar pulse
with a bandwidth of 40MHz to 1GHz, HH polarization, with a PRF of 750 Hz. The first
collection using this radar was performed at the Aberdeen Proving grounds August of 1995.
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The collection involved imaging canonical and tactical targets deployed in a deciduous forest
of varying density. The second collection was performed at the Yuma Proving Grounds at the
steel Crater site. The second collection involved imaging mines, mine simulants, wires of
various gauges, pipes of various diameters, and 55 gallon drums to represent military targets,
along with other environmental and commercial interests.

3.1.2 Simulated SAR Imagery

The lack of any real data meeting all of these requirements has forced us to use smulated
datain the preliminary experiment. The most widely used general-purpose radar signature
prediction code is XPATCH [50] . XFATCH calculates high frequency electromagnetic
scattering from complex objects based on high frequency shooting and bouncing-ray
technique. XPATCH allows the generation of SAR imagery while specifying many of the
sensor characteristics of interest. The XPATCH code has been rigorously tested against
actual radar measurements.

A second general radar signature prediction code has been developed by Surface Optics
Corporation called RadBase [4] . RadBase is capable of generating accurate Radar Cross
section and Amplitude and Phase data of complex objects using a PC. RadBase predicts
radar signature using hybrid of geometrical/physical optics approach and includes advance
interactions such as blocking, multibounce interactions, edge diffraction, and accounts for
didectric materials. The program has been fully validated X PATCH, but is very expensive.

After considering various options, we have set up a SAR ATR facility equipped with
XPATCH and complex target CAD models at Russ Engineering Center, Wright State
University. We are now capable of generating synthetic radar signals with various sensor
parameters and OC's. The data set was produced using XPATCH and CAD models of
vehicles obtained from the U.S. government. The radar signature prediction tool XPATCH
was capable of producing images of the targets imaged using different radar frequency,
polarization, and depression angle.

3.2 Basdine SAR ATR Algorithmsand | mplementation

The next decision to make is the selection of the particular SAR ATR agorithm to usein
the experiment. The most logical choice of the SAR ATR algorithm to use would be what
is commonly referred to as the baseline SAR ATR in literatures. However to date, thereis
no general agreement on what constitutes the baseline SAR ATR algorithms. In order to
help generalize the results we will obtain on the performance of SAR ATR with variation

of sensor OC's, we chose to implement severd of the more popular SAR ATR algorithms,
which represent the various approaches to tackle the ATR problemsin our experiment. In the
following sections, we will introduce some of the SAR ATR algorithms that we considered,
selected and implemented.
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321 MSATRATR

The MSTAR program, under DARPA and the Wright Laboratory, has developed a model
based vision (MBV) approach to SAR ATR [56] . The MBV ATR algorithm generates
hypotheses of the possible identity of the unknown SAR image and then matches the features
extracted from the unknown SAR image with features predicted from stored models. The
scores from each hypothesisis accumulated, and the hypothesis with the greatest evidence is
declared as the target [24] .

The MBV ATR agorithm posses several key advantages over other types of ATR
algorithms. The MBV AR approach uses an on-line signature prediction module, which
allows different sensor characteristics to be directly accounted into the generated signatures,
and the number of possible signatures generated is only limited by the properties of the
representation stored in the library. The MBV ATR algorithm uses a novel coarse to fine
hypotheses strategy to identify targets, which allows a large number of real targets to be
identified in a manner computationally traceable. The incremental approach allows the
correct identification of targets with incomplete and imperfect knowledge of operating
conditions.

3211  Algorithm Description The MSTAR algorithm can be divided into two main
stages. The first stage performs image and hypothesis reduction, and the second stage
performs the hypotheses and testing of the SAR image chips.

Thefirst stage can be subdivided into the Focus of Attention (FOA) and the indexing
subunits. The FOA unit receives as input all of the SAR imagery collected from the sensor.
The FOA unit scansthe raw SAR imagery for areas with potential targets, and removes chips
called Regions of Interest (ROI) that contain those potential targets. The actual method used
to perform FOA processing remains to the best of our knowledge undocumented.

The ROI identified by the FOA moduleis passed to the indexing module. The indexing
modul e attempts to generate possible target hypotheses which reduce the number of possible
target types the MBV ATR algorithm must process to generate an identification. The
hypothesis of the potential target must include an estimate of target type, pose, articulation,
and even obscuring factors [24] . To perform indexing, the ROI is compared to a set of
stored models in atemplate method based approach. The stored modelsin order to be useful
in reducing the number of hypotheses must span the target space. The target space can be
thought as of having two dimensions. The first dimension is target type, and the second
dimension consists of all characteristics of the target except type including pose, articulation
and variants. The models used for indexing span the target space by each being formed as a
combination of target models[39] .

The second stage uses four sub modules to process the hypotheses generated by the
index module for the correct identification of the ROI chip. The identification is done an
iterative process using each hypothesis and ROI chip as input into the Predict, Extract,
Match, and Search (PEMS) loop [24] . The PEMS loop is the foundation of the coarse to
fine reasoning strategy.

The prediction function of the PEM S loop is performed by the MSTAR feature prediction
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module. (MPM). The MPM can generate SAR image features and actual SAR imagesin an
extremely flexible process that can take into account a great number of sensor and target
parameters. The MPM can roughly be divided into on-line and off-line components.

The off-line component of the MPM has the job of representing the CAD model of
each target in the form which allows easy, accurate, quick, and dynamic feature generation
of the target with as little stored information as possible. The feature generation from
the target must coincide with some type of uncertainty representation for each feature
for anaysis. The off-line representation of the target begins by breaking the target into
the individual structures that cause specific features of the SAR image into dynamic and
static phenomenology components. Dynamic phenomenology components are created or
destroyed by configuration or articulation variation of the target. Static phenomenology
are signature elements that do not change. Once each component of the SAR signatureis
identified, the phenomenology, which best characterizes each component of the SAR image
is chosen for each structure. The phenomenology types include a) reflector primitives which
are elementary primitives with closed form electromagnetic solutions; b) scattering centers
which represent the object using the geometric theory of diffraction estimation implying
the wavelength of the electromagnetic radiation of the radar wave is much smadler than the
dimensions of the object; c) finally special phenomenology primitives which encompasses
all other structures not represented by the first two or more specifically cavities. After the
representation of each structure has been determined, the systematic data structure (SDS) of
the target is determined. The SDS defines the spatial relationship between the primitives
determined. The SDS consists of four different node types. The first node type is atwo-way
link between primitives such as between awindshield and the hood of acar. The second node
typeisajoint between two continuously articulating primitives such as between the turret
and the body of atank. The third node typeisto link primitives that can movein adirected
manner such as acar door being open or closed. Thelast type of node links the primitives for
an aterative target configuration such asa T-72 tank with or without rear gas drums[24] .

The on-line component of the MPM has the job of generating the features of the
target specified by the search module. The on-line MPM component uses the hypothesis,
which includes target type, pose, configuration, and articulation to retrieve the correct
primitives from the stored data in the off-line component of the MPM. The hypothesis
of the configuration of the target is used by the SDS to assemble a 3-D representation of
the hypnotized target. Then using sensor information, the hypothesis, and the Z-buffering
algorithm, which determines how the phenomenology of the target is obstructed, features are
predicted to coincide with the hypothesis from the search module [24] .

The search module guides and generates the hypotheses used in the identification of
the ROI chip. The search module must be able to combine data acquired thought matches
against different possible hypotheses into one complete statistical distribution. The search
modul e uses the Bayesian score represented by a statistical likelihood generated from the
match module to developed better possible hypotheses for the ROI chip, and at the end of
the active search compute the posterior probability of each hypothesis given the accrua
evidence for target identification [56] .

The search module must maximize both the likelihood and posterior probabilities. The
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likelihood function determines the probability of extracting the observed features given the
hypothesis, and can be formulated as:

P(Y =y|H = h) (3.316)

where the capital |etters denote random variables and lower case |etters denote realization.
The random variable H: Scene Hypothesis-target type, pose, articulation, background
and Y": Mector of extracted features. The match module produces a single sample of this
likelihood function. The target type is chosen by calculating the conditional probability

of the possible target type given the extracted features. The posterior probabilities are
calculated by weighting the likelihood function with prior probabilities and integrating over
all hypothesis variables other than target type and can be represented as follows:

t = arg max P(T =tlH=h) (3.317)

where T' istarget type [56] . The optimal solution would involve the complete calculation of
the likelihood function, which for SAR applicationsis almost impossible.

The calculation of the likelihood function involves feature prediction, extraction of
features from the SAR images and scoring which means simple brute force optimization
taking alarge number of samples of the likelihood function impracticable. The approach
to optimization of the two probabilities is based on viewing the problem as a sequential
sampling problem. In a classic sequential sampling problem, measurements are taken
represented by

2 = P(Y|hy) (3.318)

with an associated cost ¢;, for each measurement. The decision to take another sample and
what sampleto take (h;) is based on the previous samples z1, - - -, z;_1, and the total cost of
measurement 3" ¢;, aswell asthe total cost of making the final decision. The difficulty
of this approach is the calculation of the cost function. The cost function assumes the
knowledge of the probahility distribution of the likelihood function P(Y = y|H = h) and
more specifically the knowledge of at all P(Y = y|H = h) at al h # hy. The formation of
the optimization problem in the form of a quasi sequential sampling problem can be done by
assuming the likelihood function iswell behaved and decomposition of the search agorithm
into two components. The first component will serve as an evidence accrual function that
will calculate the conditiona probability given the first £ measurements or in other words

mr(h) = Po(H = hlz1, -+, 21). (3.319)

The second function is arefinement function, which will use 7 (h) asaguideto decide what
the next hypothesis should be and whether to keep generating hypotheses.

The hypothesis generated by the search module can be divided into two categories. The
first category of hypothesis is refinement hypothesis. Refinement hypothesis use the match
score to improve the estimate of target type, or in other words, it uses the rough estimate of
the target generated by the index module and gently refine the original guess more accurately.
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The second category of hypothesisis generation hypothesis, which generate a new guess of
what the target may be. Both types of hypothesis must be used in order to assure maximum
performance.

Refinement hypothesis assume the score produced by the match module will increase as
the hypothesis become closer to the ground truth. This assumption implies the likelihood
function is well behaved with well-defined local maxima and the original hypotheses is
close the correct maxima. The assumptions imposed on the likelihood function means that
physically the system is using features that provide a clear distinguishing between target
types, the index module consistently generates hypothesis near alocal maximum, and the
index routinely generates hypothesis that are close to the correct pose.

The search module then must use the hypotheses and the scores generated from the
match module to determine the identity of the test image. The identification of the targets
is accomplished by calculating the posterior probabilities based on the evidence acquired
through the search. The posterior probabilities cal culated are then passed through decision
rulesto generate afinal decision. The decision rules are in the form of declaring type of the
target as the type with the largest posterior probability that exceeds some threshold.

3212 Implementation The MSTAR ATR agorithm was not implemented and hence
not used in the experiment. Although the MSTAR ATR agorithm is as close to a basdline
ATR algorithm that currently exits, the independent implementation of the algorithm would
be virtually impossible. The public articles describing the implementation of the algorithm
are too vague for any serious realization, and even without this barrier, the algorithm itself
istoo complicated for individual implementation. The only choice left if the algorithm was
to be used, was to obtain a copy of the original code. The obtainment of a copy of the true
algorithm from the government proved to be unworkable.

3.22 Template Based ATR Algorithm —Baseline Algorithm 1

The template method for SAR ATR is the most straight forward and perhaps the most
reliable of all ATR agorithms[58] [37] . The processislittle more than comparing known
radar signatures collected at test ranges or from simulation with unknown radar signatures
obtained from the field. The MSE is calculated between the received signal and all of the
templates and the closest match chosen. Therefore, it is also known as the mean—square error
(MSE) classifier.

3221 Algorithm Description The template match algorithm has two parts: training
part is to generate atemplate for each class of target at a particular pose angle 7, ¢, and
classification part is to calculate the distance (M SE) between an observation target chip to
al the templates and classify the target chip to a specific target class and pose angle (¢;, ;).
The training of the algorithm consists of simply generating templates of every target for

an interval of azimuth angle. The template formation process consists of registering and
estimating the mean target signature over a small azimuth angle. The assumption is made
that over a small azimuth angle, the radar signature of the target remains constant. The
templates (IV x N dimension) are formed by averaging all of the training imagesin a given
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small range of azimuth angles (commonly 5° ~ 10°). Assuming there are N;; training
image chips within a prescribed window of azimuth angles for atarget class ¢; at pose angle
6;, we can find the mean target signature using the running mean estimation as

— 1 \YM,._ . — —

Mk (l’, y) _ (k ) k—1 (Jf, y) +kSk (l’ Lopts Y yopt) (3320)
for k =1,2,---, N;; where the optimal spatial translation (zop, yopt) between the next
image chip Si+1(z,y) and the current running mean estimation M, (z, y) can be found
according to the following alignment process

N N

= i M — Spa (@ — ey —ys)? b 3.321
(Zopt; Yopt) argg}ﬁ{ZZI k(@ y) = Sky1(z — 25,y y)l} (3:321)

rx=1y=1

The training processis iteratively progressed in between equations (3.321) and (3.320) with
aninitia value M (z,y) = S1(z, y) which isthe first image in the training image set. The
final trained template of class ¢; at pose angle 6; can be reached as

Tie,0,)(w,y) = My(z,y)  whenk = N;;. (3.322)

Classification is done by calculating the M SE between the unknown signal and all of
the templates T(, ,) in the database. The MSE classification is performed for al (c;, 0;)
according to

N

N
(¢i,0;) = arg 11111]11 {Z Z T, 0,) (T, y) — S(x — Topt, y — yopt)|2} (3.323)

r=1y=1

where (zop, yopt) are the optimal spatial translation indices for data alignment. The
minimization processes are realized by comparing the maximum cross correlation between
templates T{., o,y and image chip S(x — xopt, ¥ — yopt) for al i and j. The dataaignment is
realized by searching for the local maximum cross correlation function within asmall spatial
window of translation indices (zqp, Yopt)- 1N the template matching algorithm, the amplitude
of SAR image chip is often quarter powered to make the target and the shadow areas more
visible while at the same time preventing the strongest scatter to dominate [21] .

3222 Implementation Theinitiadl MATLAB code of the template matching algorithm
was obtained from Mike Bryant [5] that approximated the template ATR algorithm given in
the article [58] and [37] . The code was first verified and then changed to maximize the
performance of the code.

For the following discussion please referee to figure (1) which provides a flow chart
of MATLAB functions used in this algorithm. The MATLAB code for the template ATR
algorithm obtained from Mike Bryant consists of 17 separate functions that could be
subdivided into groups with four different purposes. The main groups of the program are 1).
data base generation, 2). template formation, 3). calculation of the mean squared error, and
4). performance evaluation.
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The agorithm starts with the main program or the MSE'MAIN.m function. The
main program begins with the user specified signa array size, template size, azimuth and
depression uncertainty by way of variables. The template matching ATR implementation
assumes that the target pose angle can be estimated within a small window of uncertainty by
another means. It reduces number of templatesto be tested because only the templates within
an azimuth window specified by the azimuth uncertainty value around the real azimuth
value istested in the algorithm. Then structures are declared that allow the specification of
the training and testing data sets. The user is able to specify by way of seria number and
depression angle used for training and testing targets. Then the create database function is
called.

The create_database function is the key function in the group 1) of the algorithm that
generates the database. The function begins with calling the function find_filenames.
The find_filenames function goes through the entire directory specified by the user to
develop a path directory to each of the filesin the specified directory. A structure containing
the file names is passed back to create database function. All of the files with nhames
specified by the new structure are then read into the new database. Then using the function
find_header valuefor each file, the Phoenix header is searched for important characteristics
(such as target azimuth, size of target, etc.) and the values of each characteristicsis copied
to fields of structure with the same name making up the database. This process alows the
new database to be more easily index. The last step in the creation of the databaseisacal to
the function create_index. This function goes through each field of the structure, calls the
unique_token function which finds al of the unique values of that field, and then creates
an index of each unique field. Therefore the program is able to access all targets with a
depression angle of 17° with a single presorted index. With the creation of the database the
next step is the formation of the templates.

The make_all_tmplts function is the key function in the group 2) of the algorithm
that forms the templates. The function goes through each azimuth and depression window
of each target and generates a template. The function begins by determining the values
of the azimuth and depression window for the present template. Then using the function
database query finds the indices of al the training images in the database which satisfy
the given window intervals. The make all_tmplts function then calls get_sig function,
which calls the read_sig function, which reads the magnitude image into the program. The
get_sig function quarter powers the image and then sends all of the images back to the
make_all_tmplts function in the form of a structure. Then the make _tmplt function is
called. Thisfunction removes each image off of the structure containing al of the imagesin
the training window aligns the image with the present template with the function sig_align
and then averages all of them together. The function sig_align aligns the template and the
image by calculating the covariance between the two, and then shifting. The covariance is
calculated using inverse Fourier transform on the template, and Fourier transform on the
image and then multiplying the two together.

Thetest_mse function is the key function in the group 3) of the algorithm that calculates
the mean squared error between the test image and the templates. The function begins by
using database query tofind theindices of the test images, along with the functionsget_sig
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and read_sig to retrieve the test images from the database. The tested templates are aligned
with the signal using sig_align and then the difference between the image and template is
calculated and squared.

The performance of the algorithm is then calculated. The performance measures chosen
were the confusion matrix cal culated by the score function, and the receiver operating curves
(ROC).

3223 \Veification The code was intended to be verified by performing two of

the baseline classifications performed in article [58] . The templates in the article were
congtructed using three target types imaged at a depression angle of 17° and using azimuth
interval of 17°. The targets used in the training set are given in (3.324). Thefirst test was
performed simply by resubstituting the same targets used in the training set but imaged at
depression angle of 15°. The second test involves different variants of the training vehicles
but also imaged at depression angle of 17°.

Training/Test set 1
Model | \ehicle | Serial No. | Depression angle
BMP-2 #1 9463 17°/15°
M-2 #1 17°/15° (3.324)
T-72 #1 132 17°/15°
Test set 2
Model | \ehicle | Serial No. | Depression angle
BMP-2 #2 9566 17°
M-2 #3 17° (3.325)
T-72 #4 812 17°

However, as of yet the data was not available to conduct the verification.

3224  Optimization By varying the parameters of the template ATR algorithm and
charting the performance of the code using new sets of training and test data, we performed
the optimization of the algorithm. The same training and test data sets were used later on to
optimize all three of the SAR ATR a gorithms implemented.

The new data set evaluated the performance of the algorithms over several extended
operating conditions. The training set consisted of two vehicle types (c21 and 132) both
imaged at a depression angle of 17° (3.326). The test set consisted of not only the same
two vehiclesimaged at a different depression angle of 15°, but aso involved two different
versions of each of the training vehiclesimaged at a depression angle of 15°. The test data
set also contained avehicle (c71) that was of a different class than the vehicles trained asa
confuser object (3.327).

Train set for agorithm optimization
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Model | Vehicle | Serial No. | Depression angle | No. of Images
BMP-2 #1 c21 17° 233 (3.326)
T-72 #1 132 17° 232
Test set for algorithm optimization
Model | \Wehicle | Serial No. | Depression angle | No. of Images
BMP-2 #1 c21 15° 196
#2 9563 15° 195
#3 9566 15° 196 .
T-72 #1 132 15° 196 (3.327)
#2 812 15° 195
#3 s7 15° 191
BTR-70 #1 c7l 15° 196

Thefirst decision to be made regarding the performance of the algorithm was whether to
shift or not shift the test image over the template. In the first run, the algorithm was tested
without any kind of shifting to help correct for any centroid errors between the images.

Results without alignment

Template (80-by—80) | BMP-2 | T-72 | Unknown
BMP-2#1(196) 194 0 2
BMP-2#2(195) 179 3 13
BMP-2#3(196) 178 3 15
T-72#1(196) 1 193 2 (3.328)
T—72#2(195) 30 113 52
T-72#3(191) 41 118 32
BTR-70(196) 136 22 38

Results with alignment

Template (80-by—80) | BMP-2 | T-72 | Unknown
BMP-2#1(196) 188 1 17
BMP-2#2(195) 170 10 15
BMP-2#3(196) 176 10 10
T—72#1(196) 0 194 2
T—72#2(195) 8 138 49
T—72#3(191) 9 149 33
BTR-70(196) 108 9 79
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Then asecond run was performed using the sig_align function, which allowed the test image
to be shifted over the template.
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Comparing the results obtained shows that shifting (3.329) gave dightly diminished results
when it came to identifying the BMP-2 vehicles but greatly increased the number of T-72
vehicles correctly identified. The large increase in performance of T-72 identification more
than set off the slight decrease in performance of BMP-2 identification. The alignment of
test images was adopted for al other tests.

The second measure taken to improve the performance of the template ATR algorithm
was the removal of the mean of all images before template formation or testing. The
algorithm was trained and tested with zero mean images and the results were recorded.

Results with alignment and mean removed

Template (80-by—80) | BMP-2 | T-72 | Unknown

BMP-2#1(196) 193 0 3

BMP-2#2(195) 178 0 17

BMP-2#3(196) 185 0 u

T—72#1(196) 0 193 3 (3.330)
T-72#2(195) 0 130 65

T—72#3(191) 0 174 17

BTR-70(196) 122 2 72

The zero mean images gave a very large increase in the performance of the algorithm. The
algorithm failed to mis-identify any of the BMP-2 or T-72 vehicles. The zeroing the mean
of all images was adopted for al other tests.

The last property that was varied in the algorithm was the size of the template. The size
of the template determined how much of the original image would be used in identification.
Thefirst test run was done using atemplate size of 90X90.

Results with alignment and mean removed

Template (90-by—90) | BMP-2 | T-72 | Unknown
BMP-2#1(196) 192 0 4
BMP-2#2(195) 175 0 20
BMP-2#3(196) 184 0 12
T—72#1(196) 0 194 2 (3:331)
T—72#2(195) 1 132 63
T—72#3(191) 0 176 15
BTR-70(196) 121 1 74

The bigger template allowed dlightly more of the T-72'sto be properly identified, but dightly
less of the BMP-2's were properly identified. The increase in size was inconsequential. The
template size of 100X 100 gave even worse results. A last run of was performed with a
template size of 64X64.

Results with alignment and mean removed
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Template (64-by—64) | BMP-2 | T-72 | Unknown
BMP-2#1(196) 188 1 7
BMP-2#2(195) 170 10 15
BMP-2#3(196) 176 10 10
T—72#1(196) 0 194 2 (3:332)
T—72#2(195) 8 138 49
T—72#3(191) 9 149 33
BTR-70(196) 108 9 79

The results were clearly worse than the bigger template, and the template size of 80X80 was
chosen as the best for the data set.

Though out the performance eval uation, the confuser was mis-identified at an alarming
rate. The confuser vehicle in hindsight should be extremely hard to separate because of its
similarity to the training vehicles. Therefore making it avery useful confuser.

3.23 Lincoln Laboratory ATR System — Baseline Algorithm 2

The Lincoln Laboratory ATR system [30] consists of three separate stages with each
designed to perform a specific task. The three stages are 1). detector, 2). discriminator, and
3). classifier.

3231  Algorithm description The detector receives the raw SAR data and extracts
potential regions of interest (ROI). The detector identifies candidate pixels of ROI based on
itslocal brightness. Thisis done using atwo-parameter CFAR detector defined as

Kt le s K (3333)

Oc

where X, isthe amplitude of the pixel being tested, 1. and o are respectively the mean and
standard deviation of the clutter inside of the boundary stencil, and Kcmar is the threshold
to control the false alarm rate. The boundary stencil is simply a user defined area chosen
around each test pixel.

The discriminator stage process each ROI produced from the detector and rejects any
ROI that does not contain man made objects. The discriminator stage can itself be broken
into three parts. The first component uses a rectangular target size template to slide over
the ROI in order to determine the location and orientation of the object by maximizing the
energy inside the template. The second part of the discriminator computes the discrimination
features of the ROl and the last component of the discriminator combines these features
into a discrimination statistic that indicates how “target-like” the ROI is. The discriminator
stage uses 12 discrimination features that can be divide into four groups. The four groups
are textural features, size features, contrast features and finally polarimetric features. The
textural features include a). the standard deviation which measures the fluctuation in
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intensity of theimage, b). afractal dimension which is defined by

dim — log My — log M-

log 2
where M; isequal to the number of 1 by 1 pixel boxes need to cover the target and M- is
equal to the number of 2 by 2 pixel boxes needed to cover the target, and c). the weighted
fill feature which measures the total energy contained in the brightest 5% of pixelsin the
ROI. The size features include @) the masswhich is simply the number of pixelsin the target,
b). the diameter which is defined as the length of the diagonal of the smallest rectangle that
encloses the target, and c). the normalized rotational inertiawhich is defined as *the second
mechanical moment of the blob around its center of mass, normalized by the inertia of an
equal mass square.” The contrast features consist of a). the peak CFAR, which issimply the
maximum value of the target in the CFAR image, b). the mean CFAR, which is the mean
of the values of the target in the CFAR image, and c). the percent bright CFAR, which is
the percentage of pixelsin the target of the CFAR image greater than chosen empirically
threshold. The polarimetric include @) the percent pure (odd or even) which isthe percentage
of pixelsin the target which fal in either the even bounce or odd bounce channel, percent
pure even which is percentage of pixesin the target which fall in the even bounce channel,
and b) the percent bright even which is the percentage of pixelsin the target which exceed
the threshold in the CFAR image, and even bounce. The even and odd bounce images are
calculated using the formulas

HH 2 HH — 2 )
By — % and  Eopen = % L olHVP. (3.334)
The best discrimination features for a given system (Resolution, Polarization, etc.) are

combined into a single discrimination statistic defined by the distance metric
d(X) = %(X —-M)TE (X - M) (3.335)

where n is the number of features used, M and ¥ are estimates of the mean vector and
covariance matrix of the features used obtained from the training data, and X is features
measured from the test object.

The classifier stage consists of a mean-squared error template matching classifier
design to reject man-made confuser fase alarms and identify the remaining targets. The
reference templates for the MSE classifier are constructed by first normalizing the training
images. Normalization begins by converting the magnitude image pixel to adB value. Then
thresholds are determined to eliminate al but the brightest and dimmest 1.5% of the pixels.
The resulting image consists only the bright target pixels and the dim shadow pixels. A
binary mask is then generated for the image and is morphologically processed to group all
of the target and shadow pixels together. The pixelsin the original dB image not part of the
binary mask are used to determine the mean dB clutter level p.. Thetraining imageisthen
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normalized by removing the average clutter level
R, =U;, — p,. (3.336)

The normalized image has the average clutter level removed, but the energy of the target in
relation to the clutter in the background is maintained. The images are then chopped with a
window dlightly larger than the target to remove the influence of clutter in the templates.

The pattern matching process begins with the normalization of the ROI chip by the same
procedure outlined above. Then the MSE is calculated by

N 2
€ = W (3.337)

where N isthe number of pixelsin the reference template and R; and T; are the pixel values
in the reference template and test image respectively. The reference templateis also dlid
asmall amount over the test image in the calculation of a minimum MSE to make up for
any small centroid errors. The normalization scheme causes the error measured to equal the
difference of total energy between the reference template and the test image.

3232 Implementation MATLAB code was developed to approximate the classifier
stage for the Lincoln Laboratory baseline ATR. The first two stages were not implemented
due to the fact that they were unnecessary for the experiment. The detector stageis used to
identify ROI and the discriminator stage is used to remove clutter false darms. Since al
tests were done using MSTAR target chips or Xpatch ssimulations of targets, all data were
already formed into data chips and contained no clutter. The code was verified and then the
parameters of the code changed to maximize performance.

The MATLAB code developed for this algorithm utilized many of the same functions
that were used in the template ATR MATLAB code. All of the data handling functions were
reused in this ATR implementation. The database generation, and performance evaluation
were identical and the template formation and mean squared error subparts were identical
except for afew small differences.

The largest difference between the two algorithms was the image normalization used
in the template formation and mean squared error subunits. The normalization began with
removing al but the brightest and dimmest 4% of the image pixels. The 4% value was
used instead of 1.5% because the paper used images that were much larger. The selection of
pixel values was performed by first using the sort command in MATLAB to organize the
pixels from largest to smallest value. Then it was simple matter to remove the brightest and
dimmest pixels using the find command. A binary mask was then created using these pixels.
The binary masks for each image were plotted and it was determined that morphologically
processing the mask gave very little increase in performance because the target and shadow
pixels were extremely well grouped. The mean of the pixels not under the mask were
calculated and subtracted from the origina image.

The only other difference in the code was difference in the get_sig function. Theimage
obtained was converted into a dB image in this function instead of quarter powering the
image.
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3233 \eification The verification of the Lincoln Laboratory ATR system was
intended to be done by re-performing the first experiment in the paper [30] . The classifier
in the paper was constructed with 72 templates for each target spanning an azimuth angle of
5 degrees for each target in the training set. The training target set include 9 target types

Model BMP-2 | M2 | T-72 | BRT-60 | BTR-70 | M1 | M109

Serial No. | 9563 K7 o1
NModel | M110 | M113
Seridl No. (3.339)

The algorithm was then tested using the 18 vehiclesin the test set.

Model BMP-2 | BMP-2 | BMP-2 | BRT-60 | BTR—70 | M109
\ehicle #1 #2 #3
Serial No. 9563 9566 c21 c71
Model M110 | MI13 | M1 | M2 | M2 | M2
\ehicle #1 | #2 | #3 (3.339)
Serial No.
Model M548 | T-72 | T-72 | T-72 | HMMW | M35
\ehicle #1 #2 #3
Seria No. 132 812 s/

Unfortunately, many of the data sets are restricted. As of now, the data was not available to
conduct the verification.

3234  Optimization To optimize the algorithm, a number of properties were varied
in the algorithm to obtain the maximum performance of the algorithm using atest set that
contained targets imaged at a different depression angle than the training set, along with
confusers and different versions of vehicles. The same sets of training (3.326) and testing
(3.327) dataare used.

The first parameter to be varied was the size of the template. The first step was to
generate a baseline result using a template size of 80—by—80, which all other results could be
compared.

Lincoln Laboratory ATR: 8% Pixels used

Template (80-by—80) | BMP-2 | T-72 | Unknown
BMP-2#1(196) 164 16 16
BMP-2#2(195) 144 30 21
BMP-2#3(196) 156 25 15
T—72#1(196) 18 166 12 (3.340)
T—72#2(195) 37 133 25
T—72#3(191) 25 139 27
BTR-70(196) 105 40 51
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Then arun was performed using atemplate size of 48-by—48 and the results recorded.

Lincoln Laboratory ATR: 8% Pixels used

Template (48-by—48) | BMP-2 | T-72 | Unknown

BMP-2#1(196) 163 16 17

BMP—2#2(195) 155 19 21

BMP-2#3(196) 162 u 23
T—72#1(196) 16 171 12 (3.341)
T—72#2(195) 21 150 24
T—72#3(191) 21 148 22
BTR-70(196) 13 kY] 49

The decrease in template size alowed better identification for each target in the test set. The
size of the template was then decreased to 32X 32 and the best result was recorded.

Lincoln Laboratory ATR: 8% Pixels used

Template (32-by-32) | BMP-2 | T-72 | Unknown

BMP-2#1(196) 175 6 15

BMP—2#2(195) 165 7 23

BMP-2#3(196) 161 7 28
T—72#1(196) 7 182 7 (3.342)
T—72#2(195) 16 157 22
T—72#3(191) 13 157 21
BTR-70(196) 106 K71 56

All following tests were conducted using atemplate size of 32X32.

The second parameter to be varied was the percentage of pixels used to generate the
binary mask. The first experiment conducted was to increase the number of pixels used to
16%.

Lincoln Laboratory ATR: 16% Pixels used

Template (32-by-32) | BMP-2 | T-72 | Unknown

BMP-2#1(196) 176 5 15

BMP-2#2(195) 164 7 21

BMP-2#3(196) 161 8 27
T-72#1(196) 7 182 7 (3.343)
T—72#2(195) 16 157 22
T-72#3(191) 12 158 21
BTR-70(196) 108 32 56

The result was a very dight degradation of performance. Then arun was performed using
only 1.5% of the pixels.

Lincoln Laboratory ATR: 1.5% Pixels used
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Template (32-by-32) | BMP-2 | T-72 | Unknown

BMP-2#1(196) 163 17 16

BMP-2#2(195) 144 30 21

BMP-2#3(196) 156 25 15
T—72#1(196) 18 167 u (3.344)
T—72#2(195) 37 133 25
T—72#3(191) 23 140 28
BTR-70(196) 105 40 51

This showed a large degradation in performance. The original value of 8% seemed to have
the best performance and used for al other tests.

3.24 Conditionally Gaussian ATR Algorithm — Baseline Algorithm 3

The conditionally Gaussian approach to SAR ATR uses a stochastic signal to model the
received radar signal [33] . The stochastic model attempts to model the target accurately
while capturing the variability of SAR target imagery due to obstruction, orientation, or
variation of vehicle type. Therefore in theory the conditionally Gaussian ATR approach
should be able to accurately classify targets which show significant differences in range
profile than those used in training the set.

3241  Algorithm Description The radar return is modeled as a complex Gaussian
random process, which can represented by:

r=s(6,a) + w. (3.345)

The signal part of the radar return s(6, a) which represents the characteristics of the imaged
scene is modeled as a complex Gaussian random vector that is dependent of target type a
and target orientation 6. The conditional mean and covariance are denoted by (6, a) and
K (0, a) respectively. The last part of the radar return w represents the noise component

of the recelved signal and is modeled as complex Gaussian noise having zero mean and a
covariance matrix equa to NyI. The overall mean and covariance of the radar return can be
easily calculated to give:

E{r|0,a} = p(0,a) (3.346)
E{(r —p)(r—p)*6,a} K(0,a) + Nol.

The stochastic model derived above can be simplified even further. First the noise component
w is assumed to be independent of signa s and spatially invariant. Furthermore, the signa

s isassumed spatially invariant and is the function of only for the given target type a and
orientation angle 0 as well as the variance of each pixel. From the work done by O’ Sullivan
using HHR and SAR data [33] , each pixel of the signa s of the target is well modeled as
having zero mean (6, a) = 0. These assumptions can be used to yield adiagona covariance
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matrix K which then leads to the log-ikelihood function of
|r]?

Z(T|8,a) = Z |:— In (Ki,i(@,a/) + NQI) — m (3347)

9

which is summed over all of the pixels.

The above derivation shows that the only unknown values and hence the values which
need to be estimated from the training data are the variances of each pixel. First the
assumption is made that the variance of each pixel is nearly constant within small intervals
of orientation angle #. Therefore the training database can be divided into IV, windows with
each spanning an interval of azimuth angle d radians wide. The k*" window is centered at
0, = ]%,—”k The k" window interval of azimuth values that each pixel istrained is given by

27 d 27 d
Wk—[N—wk 2N k+— ) (3.348)

Now the variance of the it pixel for target class a; at pose angle 6, can be found using

02O, a)) = — Z Iri(0,a))> forl <k < N,, (3.349)
GEWk

where Ny, is the number of training images within the window of interval W and1 <[ <t
with ¢ equal to the number of targetsin thetraining data base. Because the estimated variance
is unbiased due to the fact the mean is assumed to be zero. In other words, if every pixel is
assumed to have zero mean, the variance of apixel at a specified location is simply the mean
of the squared magnitudes of all the pixelsin that location of al the training images within
the azimuth window interval W,.

The classification of the ROI is performed using a Bayesian approach by selecting the
target class a(r), which maximizes

P(a|r) o P(r|a)P(a). (3.350)
In our problem set up, we need to maximize
P(a|r) o P(r|0,n,a)P(0la)P(n|a)P(a) (3.351)

where 6 is the orientation of the target and 7 is the location of the target. If we treat the
orientation of the target 6 and the location of the target n as nuisance variables, we can
integrate over all possible orientations and locations to obtain the correct result. With
the approximation of covariance function o2 (6, a;) is a piecewise constant in 0 € Wy,
the probability density function P(r|0,n;,a) is approximated as piecewise constant in
orientation ¢, and location ;. The Bayesian estimate of target type over al possible
orientation and location becomes

r) = arg mng > P(r(fk,n;, a). (3.352)
k J
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3242 Implementation MATLAB codewas generated to approximate the conditionally
Gaussian ATR modd presented in the article [33] . The code was verified, and then
parameters of the code were changed to maximize the performance of the code.

The MATLAB code developed for this algorithm utilized many of the same functions
that were used in the template ATR code. All of the data handling functions were reused in
this ATR implementation. The database generation was identical.

The training d gorithm was performed using the function train_gauss. The first step of
the training was to convert the matrix form of image into a column vector. Using all of the
column vectors that represent the training images in the given azimuth window Wy, the
variance of each pixel is calculated by the simplification that the variance is equa to the
mean of the squared pixelsin thetraining group. The variance at each pixel location isthen
stored in a variance vector identified by V' (6, a;) from which will be used as the dictionary
for identification.

Thetesting part of the algorithm is performed by thetest_gaussfunction. Thetest_gauss
function first converts the test image into a single column vector. The test and training
vectors were assumed to be well registered with each other and no shifting was performed.
This assumption was well founded since only MSTAR and XPACTH data was used. Then
using the normpdf MATLAB function calculates the probability values of each test pixel
value using the zero mean Gaussian distribution function with the variances from the
variance vector V (0, a;) in thetraining set. For each given variance vector in the training
set, the probability of each pixel in the test image is calculated and al of the probability
values of the test image are summed and normalized. The process yields one summed and
normalized probability value for each variance vector in the training set (for all k's and I’s).
Theidentification of the target is performed by the score_gauss function, which assignsthe
test image the identification a; of the variance vector in the training set with the maximum
summed and normalized probability value.

3.24.3 \Veification The verification of the conditionally Gaussian ATR method was
done by reperforming the author’s baseline experiment under what was called standard
operating conditions [33] . The baseline experiment used image size of 80—-by—80 with
N,, = 72 orientation windows trained with an overlapped azimuth spanning interval of
d = 10°. Thetraining data set consisted of four target types obtained from the publicly
released MSTAR data set with two the target types consisting of multiple vehicle types all
imaged at a depression angle of 17°.

Training Set
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Model \khicle | Serial No. | Depression angle | No. of Images
BMP-2 #1 9563 17° 233
#2 9566 17° 231
#3 c21 17° 233

T-72 #1 132 17° 232 3.353)

#2 812 17° 231
#3 s7 17° 228
BRDM-2 #1 E-71 17° 298
BTR-70 #1 c7l 17° 233

The testing set consisted of the same vehiclesimaged at a depression angle of 15°.

Testing Set
Model \ehicle | Seriad No. | Depression angle | No. of Images
BMP-2 #1 9563 15° 195
#2 9566 15° 196
#3 c21 15° 196
T-72 #1 132 15° 196 3.354)
#2 812 15° 195
#3 s7 15° 191
BRDM-2 #1 E-71 15° 263
BTR-70 #1 c7l 15° 196
The algorithm was tested and compared to the author’s result.
Author'sresult [33]
BMP-2 | BRDM-2 | BTR-70 | T-72
BMP-2(587) 581 0 0 6
BRDM-2(263) 6 243 0 14 (3.355)
BTR-70(196) 7 0 186 3
T-72(582) 0 0 0 582
Our result
BMP-2 | BRDM-2 | BTR-70 | T-72
BMP-2(587) 578 0 2 7
BRDM—-2(263) 6 243 1 15 (3.356)
BTR-70(196) 8 0 185 3
T-72(582) 2 0 0 580
The verification shows that our algorithm isin good agreement with the one presented in the
paper.
3244  Optimization To optimize the algorithm, a number of properties were varied
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in the algorithm to obtain the maximum performance of the algorithm using same test set
(3.327) that contained targets imaged at different a different depression angle than the
training set (3.326) along with confusers and different vehicle versions.

The first parameter to be varied is the size of the image used. The first step was to
generate abaseline result which al other results could be compared. In thisrun, the datawas
assumed to have zero mean, and used an image size of 48-by—48 which was the image size
the author reported having the best results [33] .

Conditionally Gaussian ATR: 48—by—48

Zero Mean BMP-2 | T-72 | Unknown
BMP—2#1(196) | 180 0 16
BMP—2#2(195) | 169 9 17
BMP-2#3(196) 159 20 17
T_7271(196) T | 172 73 (3.357)
T—72#2(195) 13 152 31
T—72#3(191) 10 169 12
BTR-70(196) 107 84 5

A runwas first performed using atemplate size of 32-by—32 and the results recorded.

Conditionally Gaussian ATR: 32-by—32

Zero Mean BMP-2 | T-72 | Unknown
BMP-2#1(196) 184 0 12
BMP-2#2(195) 169 13 13
BMP-2#3(196) 185 6 5
T—72#1(196) 1 170 25 (3.358)
T—72#2(195) 13 140 42
T—72#3(191) 18 154 19
BTR-70(196) 143 52 1

The results from a decrease in template size obviously gave worse results. A run of the data
was then performed using an image size of 64—by—64, and the results recorded.

Conditionally Gaussian ATR: 64-by—64

Zero Mean BMP-2 | T-72 | Unknown
BMP-2#1(196) 192 0 4
BMP-2#2(195) 157 12 26
BMP-2#3(196) 169 10 17
T—72#1(196) 1 192 3 (3.359)
T—72#2(195) 52 93 50
T—72#3(191) 50 125 16
BTR-70(196) 97 70 29
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The results of the experiment clearly show that image size of 48-by—48 isoptimal.

The last parameter varied in the optimization was the assumption that the SAR imagery
datais well modeled having zero mean. A run of the data was conducted where the mean the
pixel values were calculated.

Conditionally Gaussian ATR: 48-by—48

Cdculated Mean | BMP-2 | T-72 | Unknown

BMP-2#1(196) 192 1 3

BMP-2#2(195) 162 10 23

BMP-2#3(196) 148 27 21
T—72#1(196) 2 192 2 (3.360)
T—72#2(195) 18 136 41
T—72#3(191) 19 146 26
BTR-70(196) 77 69 50

The zero mean assumption gave surprisingly good results and better than actually calculating
the mean. Thisresultis till puzzling.

3.3 Experimental Paradigm and Preliminary Test — A Road Map for
Future Study

Even though, the literature search turned out very little work having been done in SAR
parametric study for ATR, every ATR work showed good performance only under fixed set of
SAR image parameters. The ATR algorithms were always trained and tested under the same
or very similar sensor OC's. Their performance has the tendency being degraded severely as
soon as the SAR image sources from different sensor or sensor OC’s are applied. Asyou go
through the SAR image formation algorithms and various assumptions made on the sensor
parameters in the Brief section, you can realize the significant effects of SAR parameters
and imaging algorithms on the appearance (pixel vaues) of SAR images. Independent of the
underline ATR techniques such as model based, template matching, stochastic, etc., all ATR
algorithms will be affected by the variations in sensor OC's as long as they are image based
(using SAR images as the observation data source). Inconsistency in the data observation
under various sensor OC's will unavoidably cause degradation in target classification.

In order to understand the level of significance of the effects of the sensor OC’s on
ATR performance, we need to set up an experimental paradigm to test various sensor OC's
and their combinations. Now we have established alimited basgline ATR a gorithms and
surveyed the availability of existing data sources for parametric study. The next component
of the experimental paradigm is to decide the choice of which sensor OC'’s should be
investigated in the experiment. Although the lack of any real research into the effects
of sensor OC would imply any group of sensor OC's would suffice, we chose to study a
few of the sensor OC's that seem more likely to produce the largest effects on SAR ATR
performance and likely to be properly modeled. Plus, the combinations of those sensor OC's
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will create alarger dimensional problem to study.
331 SAR Sensor Parametersfor Further Study

The depression angle that the sensor forms with the imaging plane will be evaluated in the
preliminary experiment. The depression angle is the sensor OC that determines how the
projection of the real 3-D object to the 2-D SAR image plane will be formed. Although
the effects of depression angle is the only sensor OC to be investigated in most SAR
ATR agorithms, the evaluations of depression angle is done using MSTAR data where
the depression angle is only varied a few degrees. The depression angle is arelatively
independent sensor OC which has very little interaction with other sensor OC'’s. In most of
SAR image algorithms, depression angle is dealt with at the beginning of the process to form
adant plane. Therefore, it is easy to model and simulate. The depression angle has great
effects on SAR image appearance and so as the performance of ATR.

The frequencies of the radar pulse used by the sensor to collect SAR imagery will
be evaluated in the preliminary experiment. The choice of frequency and bandwidth of
aradar pulse is one of the most important characteristics of the sensor. Although the use
of simulated data will not alow an investigation of the effects of foliage obstruction and
FOPEN radar, the effects of frequency and resolution of complex objects can be investigated.
The frequency and bandwidth of radar pulse isrelatively smple to model. The ssimulation
using Xpatch can generate radar response signals with wide frequency range. However,
frequency and bandwidth have complicated interactions with the assumptions made in the
SAR image formation algorithms. Some cares have to be taken in SAR image formation
algorithms to handle the frequency and bandwidth variations.

The polarization of the radar pulse used by the sensor to collect SAR imagery will
also be evaluated in the preliminary experiment. The polarization of the radar wave will
determine some of the scattering characteristics of the incident waves on the complex
object and hence extremely important in the formation of the SAR image. The effects of
polarization on SAR ATR agorithms have not been covered in depth in any previous study.
Polarization is easy to model and relatively independent of other sensor OC's.

The noise level in the received SAR image will also be evaluated in our preliminary
experiment. Noise level in our SAR imagery can be easily manufactured in our simulated
data by randomly changing pixel valuesin our image to a random number obtained from
a Rayleigh distribution which models speckle. The experiment should provide valuable
information for future devel opment of ATR algorithms.

The sensor OC's of squint angle, type of antenna (beamwidth, resolution, footprint)
and synthetic aperture length are closely related in SAR image formation agorithms.
Any change on one parameter will affect the selection of others in the image formation
algorithms. Many assumptions and approximations of parametersin the image formation
algorithms have to be changed to reflect the sensor OC's. The type of antenna which will
affect the radar beamwidth, resolution and footprint is a very hard to model sensor OC and
very expensive to come up with real datato cover the variation of radar antennatypes. The
variations of radar beamwidth, resolution and footprint can not be simulated in Xpatch.
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Therefore, we will leave the antenna out of the parametric study. Thisis usually not a big
issue, due to the ATR is almost never performed cross the data from different kinds or radar.
Squint angle and synthetic aperture length can be modeled in the X patch simulation and SAR
image formation algorithms. They are connected with SAR operation modes like stripmap
vs. spot and single vs. multi-look. All of these sensor OC's can be modeled in simulation
however they al have close association with each other in SAR image formation algorithms.
They are required to be studied together with alimited sets realistic OC constrains that can
be derived from real SAR sensor systems or from prior publications of those subjects.

3.3.2 Preliminary Experimentson Available Public Data

Although public SAR imagery is limited, there existed only enough data to perform one
preliminary experiment on the variations of depression angle sensor OC. A subset of the
MSTAR data contained targets imaged at depression angles of 15° and 45°. The targets
consisted of T72_A64, BRDM-2, ZSU_23 4 and 251. Each baseline ATR algorithm was
trained using the all targets imaged at 15° (no confusers) and then tested using the images
formed using the depression angle of 45°. All the baseline a gorithms ran on their optimized
parameter settings.

Template Matching Algorithm
303 Chips | 251 | T72_A64 | BRDM-2 | ZSU_23 Unknown

251 53 143 52 1 54
TI2A64 | 0 234 69 0 0 |(3.36))
BRDM-2 | 0 172 131 0 0
ZSU 23 4 | 155 58 10 13 67

Lincoln Lab. ATR Algorithm
303 Chips | 251 | T72_A64 | BRDM-2 | ZSU 23 Unknown

251 26 121 108 0 23
T72 A64 | 0 184 100 0 19  |(3.362)
BRDM-2 | O 181 % 0 24
ZSU 23 4 | 57 90 9% 28 30

Conditional Gaussian Algorithm
303 Chips | 251 | T72_A64 | BRDM-2 | ZSU_23 Unknown

251 234 13 0 3 53
T72 A64 | 28 271 0 0 4 |(3.363)
BRDM-2 | 21 281 0 0 1
ZSU 23 4 | 130 29 0 71 63

As expected, none of the baseline ATR a gorithms perform satisfactorily on the data sets
imaged at such large difference in depression angles.
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3.3.3 Simulated Data Generation using Xpatch

The lack of available data across the sensor OC dimension combined with the expense
of generating real data has lead us to the generation of simulated data using X patch. For
the experiment we will need data consisting of several targets with variation in frequency,
polarization, depression angle, and artificially with noise level. The target set consists of
three high definition CAD models which were obtained from the USAF. The cad models
consist of aBMR T-72, and aBTR-70.

The parameters for the Xpatch simulation were set up to provide results which provide
the most “raw” information possible while trying to mirror the MSTAR data collection.
Each simulation was set up to collect a series of individua range profiles over the synthetic
aperture in the frequency domain rather than allowing Xpatch to automatically generate
the SAR image. Although this action had the effect of increasing the simulation time from
10 hours to generate one image to over 100 hours, it provides more accurate information,
and allows us to use different image formation and weighting algorithms with different
parameter such as synthetic aperture length. In order to decrease the amount of simulated
data generated, it was decided that only afew azimuth angles were needed for each target
over each sensor dimension. The data set will contain each target imagined at center azimuth
angles of 0°, 30°, 60°, 90°, 120°, 150°, and 180°. Thiswill allow images of the target from
the front to back while eliminating essentially the same images because of the symmetry of
the target.

The depression angle data will be collected from 20° to 45° in 5° increments. The data
will be simulated trying to mirror the MSTAR collection. The simulation will be done using
a center frequency of 9.6 GHz (X-band) with a bandwidth of 0.5 GHz providing 11.8 inches
of resolution. The synthetic aperture has an integration angle of 2.9842° which provides a
resolution of 11.8 inchesin cross range which gives square resolution pixels.

The frequency data will be smulated from 1 GHz to 10 GHz in 1 GHz increments.
Although originally the frequency bandwidth was intended to be much larger, the longer
simulation time which would be required because of the necessity to use exact solvers at low
frequencies instead of the high frequency approximations constrained the frequency range
and kept it in the GHz range. The simulation will be set up to keep the keep the square 11.8
inch resolution pixels for each frequency range. Thisimplies integration angle will increase
from 2.9842° at 10 GHz t0 29.842° at 1 GHz. The bandwidth of the signal will remain at 0.5
GHz for each data collection.

The data simulated so far consists of the T-72 and BMP at azimuth angles of 0°, 30°,
60°, 90°, 120°, 150°, and 180° at the depression angles of 30°, and 35° at 9.6 GHz. There
was also a collection of the BMP at 30° depression angle at 1GHz for azimuth angles from
0° to 360°. The data simulation is continuing as planned. We expected to finish the initial
data simulation in May 2003 and some experiments will be conducted after that.

3.34 SAR ATR Parametric Experimental Platform

This section provides an explanation of proposed SAR ATR parametric experimental
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platform shown in figure (2). In this platform, we have aready invested a SUN workstation
equipped with Xpatch and the detailed target CAD models obtained from the Air force. This
investment is located at an ITAR facility, 023 of Russ Engineering Center at Wright State
University. Thisfacility provides us the capability of generating simulated raw radar range
profile data or SAR images under various sensor parameters such as depression angles,
radar frequencies, polarization, squint angle, stripmap and spot mode, etc. To generate

raw radar range profile data gives us some flexibility to vary some of the sensor OC'sin
SAR image formation agorithms or vary the image formation algorithm itself. The next
piece in the platform is the image distance metric to quantify the image differences for the
SAR images generated under different sensor OC's. SAR Image is an information source
with multiple characteristics and those characteristics will have different impacts on the
performance of ATR agorithms. For example, the statistic information of the image pixels of
the SAR image will play an important role in the baseline ATR algorithms using conditional
Gaussian method. And the patterns of the SAR image may have greater effects on the
template matching ATR algorithm. Therefore, a number of image distance metrics will be
used in the platform: Energy, Statistic Information, Pattern and other Features. We have
already established three baseline ATR algorithms. The list can be expanded if some other
significant ATR algorithms with sufficient implementation information would be available.
The standard ATR summary performance measures [38] such as. Detection Probability
(Paet), Probability of False Alarm (P;,), |dentification Probability (Fq), and Correct
Label Probability (Py), etc. will be used to compare the performance of the ATR agorithms
under various sensor OC's. At the same time, the SAR images generated under different
sensor OC's are compared with the combinational scores using the distance metrics. Some
correlation between the scores from these two scoring systems can be established for all
the SAR image based ATR algorithms. We believe this SAR ATR parametric experimental
platform can greatly aid the study of effects of SAR sensor OC'’s on the performance of SAR
image based ATR agorithms.
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Chapter 4
Conclusion

In this document, we first provided a brief introduction to the SAR sensor parameters and
their functions in the SAR image formation agorithms. We have also discussed various
assumptions and approximations made inside the SAR image formation algorithms. In this
study, we have performed a complete literature survey on the prior worksin SAR ATR
parametric study. We concluded that though there were some studies on the SAR parameters
and their behavior in the SAR image formation algorithms. Little has been done towards the
ATR algorithm performance. The one of the most important reasons for the lack of study

in this areais the lack of proper SAR image data with a complete spectrum of the sensor
OC'svariations. Also in the course of study, we found there were no agreeable baseline
ATR agorithms for the ATR performance evaluation study. In order to establish a set of
baseline ATR agorithms, we discovered three existing ATR agorithms with different target
classification techniques. In this project, we have implemented, verified and optimized the
ATR agorithms using Matlab with the data from MSTAR database. The established baseline
ATR agorithms are documented in this report for future ATR performance evaluation. In the
searching for the available real SAR image data with variations in sensor OC's, we found, as
expected, nothing significant. Dueto the lack of real experimental data, it leads usto explore
the possibility of generate simulated SAR data with various assumed sensor OC's. We have
set up an ITAR facility at our location for this purpose with the investment from Wright State
University. The facility has the capability of generating SAR range profile or image data
under various sensor OC's using Xpatch. Theinitial data simulation is planned in this study
and currently the first phase of data simulation is being carried out. The first phase of data
simulation is intended to cover sensor OC's in depression angle, frequency, polarization,
noise, synthetic aperture length, and SAR image formation algorithms. In carrying out data
simulation, we found that the simulation on a complex target under one set of sensor OC
took very long time (hundreds hours) to run. And we need multiple set of sensor OC's to
evaluate any ATR algorithm. Therefore, the data simulation is an on—going process and the
results will be reported to Air force engineersin the future (this part is not atask in the
origina proposal anyway). To point out the roadmap for the future study in this area, we
also developed a SAR ATR parametric experimental platform which has al the components
for conducting SAR ATR parametric study. \We conducted a preliminary experiment for the
depression angle variation on the baseline ATR algorithms using the only real SAR data
available from MSTAR database. The preliminary experiment is to illustrate the evaluation
process. Aswe expected, the experiment showed that al the baseline ATR algorithms failed
to yield usable confusion matrix at such large depression angle variations. Asconclusion, we
have fulfilled the objectives of this study only to discover more research needs to be done
for the future studiesin this area
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